Advertisements
Advertisements
Question
A park, in the shape of a quadrilateral ABCD, has ∠C = 90°, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy?
Solution
Let us join BD.
In ΔBCD, applying Pythagoras theorem,
BD2 = BC2 + CD2
= (12)2 + (5)2
= 144 + 25
BD2 = 169
BD = 13 m
Area of ΔBCD
`= 1/2xxBCxxCD = (1/2xx12xx5)m^2=30m^2`
For ΔABD,
`s="Perimeter"/2=(9+8+12)/2=15m`
By Heron's formula,
`"Area of triangle "=sqrt(s(s-a)(s-b)(s-c))`
`"Area of "triangleABD=[sqrt(15(15-9)(15-8)(15-13))]m^2`
`=(sqrt(15xx6xx7xx2))m^2`
`=6sqrt35 m^2`
= (6 x 5.916) m2
= 35.496 m2
Area of the park = Area of ΔABD + Area of ΔBCD
= 35.496 + 30 m2
= 65.496 m2
= 65.5 m2 (approximately)
APPEARS IN
RELATED QUESTIONS
Find the area of a quadrilateral ABCD is which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm.
Find the area of an equilateral triangle having altitude h cm.
Let Δ be the area of a triangle. Find the area of a triangle whose each side is twice the side of the given triangle.
The sides of a triangle are 11 m, 60 m and 61 m. The altitude to the smallest side is
The base and hypotenuse of a right triangle are respectively 5 cm and 13 cm long. Its area is
If the area of an equilateral triangle is `16sqrt(3)` cm2, then the perimeter of the triangle is ______.
The area of an isosceles triangle having base 2 cm and the length of one of the equal sides 4 cm, is ______.
The edges of a triangular board are 6 cm, 8 cm and 10 cm. The cost of painting it at the rate of 9 paise per cm2 is ______.
The area of the equilateral triangle is `20sqrt(3)` cm2 whose each side is 8 cm.
In a triangle, the sides are given as 11 cm, 12 cm and 13 cm. The length of the altitude is 10.25 cm corresponding to the side having length 12 cm.