Advertisements
Advertisements
प्रश्न
Simplify `("b"^2 + 3"b" - 28)/("b"^2 + 4"b" + 4) ÷ ("b"^2 - 49)/("b"^2 - 5"b" - 14)`
उत्तर
b2 + 3b – 28 = (b + 7) (b – 4)
b2 + 4b + 4 = (b + 2) (b + 2)
b2 – 49 = b2 – 72
= (b + 7) (b – 7)
b2 – 5b – 14 = (b – 7) (b + 2)
`("b"^2 + 3"b" - 28)/("b"^2 + 4"b" + 4) ÷ ("b"^2 - 49)/("b"^2 - 5"b" - 14)`
= `(("b" + 7)("b" - 4))/(("b" + 2)("b" + 2)) ÷ (("b" + 7)("b" - 7))/(("b" - 7)("b" + 2))`
= `(("b" + 7)("b" - 4))/(("b" + 2)("b" + 2)) xx (("b" + 2))/(("b" + 7))`
= `(("b" - 4))/(("b" + 2))`
APPEARS IN
संबंधित प्रश्न
Reduce the following rational expression to its lowest form
`(x^2 - 1)/(x^2 + x)`
Find the excluded values, of the following expression
`"t"/("t"^2 - 5"t" + 6)`
Find the excluded values, of the following expression
`(x^2 + 6x + 8)/(x^2 + x - 2)`
Simplify `(12"t"^2 - 22"t" + 8)/(3"t") ÷ (3"t"^2 + 2"t" - 8)/(2"t"^2 + 4"t")`
If x = `("a"^2 + 3"a" - 4)/(3"a"^2 - 3)` and y = `("a"^2 + 2"a" - 8)/(2"a"^2 - 2"a" - 4)` find the value of x2y–2
Simplify `(x^3)/(x - y) + (y^3)/(y - x)`
If A = `(2x + 1)/(2x - 1)`, B = `(2x - 1)/(2x + 1)` find `1/("A" - "B") - (2"B")/("A"^2 - "B"^2)`
`(3y - 3)/y ÷ (7y - 7)/(3y^2)` is
Simplify `(1/("p") + 1/("q" + "r"))/(1/"p" - 1/("q" + "r")) xx [1 + ("q"^2 + "r"^2 - "p"^2)/(2"qr")]`
Is it possible to design a rectangular park of perimeter 320 m and area 4800 m2? If so find its length and breadth.