Advertisements
Advertisements
Question
Simplify `("b"^2 + 3"b" - 28)/("b"^2 + 4"b" + 4) ÷ ("b"^2 - 49)/("b"^2 - 5"b" - 14)`
Solution
b2 + 3b – 28 = (b + 7) (b – 4)
b2 + 4b + 4 = (b + 2) (b + 2)
b2 – 49 = b2 – 72
= (b + 7) (b – 7)
b2 – 5b – 14 = (b – 7) (b + 2)
`("b"^2 + 3"b" - 28)/("b"^2 + 4"b" + 4) ÷ ("b"^2 - 49)/("b"^2 - 5"b" - 14)`
= `(("b" + 7)("b" - 4))/(("b" + 2)("b" + 2)) ÷ (("b" + 7)("b" - 7))/(("b" - 7)("b" + 2))`
= `(("b" + 7)("b" - 4))/(("b" + 2)("b" + 2)) xx (("b" + 2))/(("b" + 7))`
= `(("b" - 4))/(("b" + 2))`
APPEARS IN
RELATED QUESTIONS
Reduce the following rational expression to its lowest form
`(x^2 - 1)/(x^2 + x)`
Reduce the following rational expression to its lowest form
`("p"^2 - 3"p" - 40)/(2"p"^3 - 24"p"^2 + 64"p")`
Simplify `(4x^2y)/(2z^2) xx (6xz^3)/(20y^4)`
Simplify `(2"a"^2 + 5"a" + 3)/(2"a"^2 + 7"a" + 6) ÷ ("a"^2 + 6"a" + 5)/(-5"a"^2 - 35"a" - 50)`
Simplify `(x(x + 1))/(x - 2) + (x(1 - x))/(x - 2)`
Simplify `(x^3)/(x - y) + (y^3)/(y - x)`
Subtract `1/(x^2 + 2)` from `(2x^3 + x^2 + 3)/(x^2 + 2)^2`
`(3y - 3)/y ÷ (7y - 7)/(3y^2)` is
Simplify `(1/("p") + 1/("q" + "r"))/(1/"p" - 1/("q" + "r")) xx [1 + ("q"^2 + "r"^2 - "p"^2)/(2"qr")]`
Is it possible to design a rectangular park of perimeter 320 m and area 4800 m2? If so find its length and breadth.