Advertisements
Advertisements
प्रश्न
Simplify:
`(2^-3-2^-4)(2^-3+2^-4)`
बेरीज
उत्तर
`(2^-3-2^-4)(2^-3+2^-4)`
`=(2^-3)^2-(2^-4)^2`
`{∵("a"-"b")("a"+"b")="a"^2-"b"^2}`
`=2^-6-2^-8=1/2^6-1/2^8`
`=1/64-1/256`
`=(4-1)/256=3/256`
shaalaa.com
More About Exponents
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Compute:
`1^8xx3^0xx5^3xx2^2`
Compute:
`(-1/3)^4÷(-1/3)^8xx(-1/3)^5`
Compute:
`(-3)^4-(root(4)(3))^0xx(-2)^5÷(64)^(2/3)`
Evaluate:
`9^0+9^-1-9^-2+9^(1/2)-9^(-1/2)`
Simplify:
`(125"x"^-3)^(1/3)`
Simplify:
`(27"x"^-3"y"^6)^(2/3)`
Simplify and express as positive indice:
(xy)(m-n).(yz)(n-l).(zx)(l-m)
Show that:
`(("x"^"a")/"x"^(-"b"))^("a"-"b").(("x"^"b")/"x"^(-"c"))^("b"-"c").(("x"^"c")/("x"^(-"a")))^("c"-"a")=1`
Evaluate:
`(x^(5+n)(x^2)^(3n+1))/x^(7n-2)`
Prove that:
`("m"+"n")^-1("m"^-1+"n"^-1)=("m""n")^-1`