मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

Sketch the graphs of the following functions: y = x4-x - Mathematics

Advertisements
Advertisements

प्रश्न

Sketch the graphs of the following functions:

y = `xsqrt(4 - x)`

आलेख

उत्तर


y = `xsqrt(4 - x)` = f(x)

Where x > 4 the curve does not exist and it exists for x ≤ 4

∴ The domain is `(-oo, 4]` and the Range is `(- oo, 16/(3sqrt(3))]`

The curve passes through the origin.

The curve intersects x-axis at (4, 0).

f'(x) = `- x/(2sqrt(4 - x)) + sqrt(4 - x)`

= `(8 - 3x)/(2sqrt(4 - x))`

f'(x) = 0

⇒ 8 – 3x = 0

⇒ x = `8/3`

∴ Critical point of the curve occur at x = `8/3`

f”(x) = `(3x - 16)/(4(4 - x)^(3/2))`

`"f''"(8/3) = - (3sqrt(3))/4 < 0`

∴ f(x) is maximum at x = `8/3` and the total maximum `"f"(8/3) = 16/(3sqrt(3))` and ocal minimum is 0 at x = 4   .......(From the graph)

f”(x) = `(3x - 16)/(4(4 - x)^(3/2))` < 0 ∀ x < 4

∴ The curve is concave downward in the negative real line.

No point of inflection exists.

As `x → oo, y → +-  oo` , and hence the curve does not have any asymptotes.

shaalaa.com
Sketching of Curves
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Applications of Differential Calculus - Exercise 7.9 [पृष्ठ ५३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 7 Applications of Differential Calculus
Exercise 7.9 | Q 2. (ii) | पृष्ठ ५३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×