Advertisements
Advertisements
प्रश्न
Solve each of the following systems of equations by the method of cross-multiplication
`x/a = y/b`
`ax + by = a^2 + b^2`
उत्तर
`x/a = y/b`
``ax + by = a^2 + b^2`
Here `a_1 = 1/a, b_1 = (-1)/b, c_1 = 0`
`a_2 = a, b_2 = b,c_2 = -(a^2 + b^2)`
By cross multiplication, we get
`x/(-1/b(-(a^2 + b^2))-b(0)) = (-y)/(1/a(-(a^2 + b^2))-a(0)) = 1/(1/a (b) - a xx ((-1)/b))`
`x/((a^2 + b^2)/b) = y/((a^2 + b^2)/a) = 1/(b/a + a/b)`
`x = ((a^2 + b^2)/b)/(b/a + a/b) = ((a^2 +b^2)/b)/((b^2 + a^2)/(ab)) = a`
`y = ((a^2 + b^2)/a)/(b/a + a/b) = ((a^2 + b^2)/b)/((b^2+a^2)/(ab)) = b`
Solution is (a, b)
APPEARS IN
संबंधित प्रश्न
Which of the following pairs of linear equations has unique solution, no solution or infinitely many solutions? In case there is a unique solution, find it by using cross multiplication method
2x + y = 5
3x + 2y = 8
For which value of k will the following pair of linear equations have no solution?
3x + y = 1
(2k – 1)x + (k – 1)y = 2k + 1
Form the pair of linear equations in the following problems and find their solutions (if they exist) by any algebraic method
The area of a rectangle gets reduced by 9 square units, if its length is reduced by 5 units and breadth is increased by 3 units. If we increase the length by 3 units and the breadth by 2 units, the area increases by 67 square units. Find the dimensions of the rectangle.
Solve each of the following systems of equations by the method of cross-multiplication :
x + 2y + 1 = 0
2x − 3y − 12 = 0
Solve each of the following systems of equations by the method of cross-multiplication :
2x + y = 35
3x + 4y = 65
Solve each of the following systems of equations by the method of cross-multiplication :
`57/(x + y) + 6/(x - y) = 5`
`38/(x + y) + 21/(x - y) = 9`
Solve the system of equations by using the method of cross multiplication:
x + 2y + 1 = 0,
2x – 3y – 12 = 0.
Solve the system of equations by using the method of cross multiplication:
6x - 5y - 16 = 0,
7x - 13y + 10 = 0
Solve the following pair of equations:
x + y = 3.3, `0.6/(3x - 2y) = -1, 3x - 2y ≠ 0`
Susan invested certain amount of money in two schemes A and B, which offer interest at the rate of 8% per annum and 9% per annum, respectively. She received Rs 1860 as annual interest. However, had she interchanged the amount of investments in the two schemes, she would have received Rs 20 more as annual interest. How much money did she invest in each scheme?