Advertisements
Advertisements
प्रश्न
Solve the following pairs of equations by reducing them to a pair of linear equations
`(7x-2y)/(xy) = 5`
`(8x + 7y)/(xy) = 15`
उत्तर
`(7x-2y)/(xy) = 5`
`⇒ (7x)/(xy) - (2y)/(xy) = 5`
`⇒ 7/y - 2/x = 5 ... (i)`
`(8x+7y)/(xy) = 15`
`⇒ (8x)/(xy) + (7y)/(xy) = 15`
`⇒ 8/y + 7/x = 15 ... (ii)`
Putting `1/x = p ` in (i) and (ii) we get,
7q - 2p = 5 ... (iii)
8q + 7p = 15 ... (iv)
Multiplying equation (iii) by 7 and multiplying equation (iv) by 2 we get,
49q - 14p = 35 ... (v)
16q + 14p = 30 ... (vi)
Now, adding equation (v) and (vi) we get,
49q - 14p + 16q + 14p = 35 + 30
⇒ 65q = 65
⇒ q = 1
Putting the value of q in equation (iv)
8 + 7p = 15
⇒ 7p = 7
⇒ p = 1
Now,
p = 1/x = 1
⇒ 1/x = 1
⇒ x = 1
also, q = 1 = 1/y
⇒ 1/y = 1
⇒ y = 1
Hence, x =1 and y = 1 is the solution
APPEARS IN
संबंधित प्रश्न
Solve the following system of equations `\frac { 1 }{ 2x } – \frac { 1 }{ y } = – 1; \frac { 1 }{ x } + \frac { 1}{ 2y } = 8`
Formulate the following problems as a pair of equations, and hence find their solutions:
Roohi travels 300 km to her home partly by train and partly by bus. She takes 4 hours if she travels 60 km by train and remaining by bus. If she travels 100 km by train and the remaining by bus, she takes 10 minutes longer. Find the speed of the train and the bus separately.
A train covered a certain distance at a uniform speed. If the train would have been 10 km/h faster, it would have taken 2 hours less than the scheduled time. And if the train were slower by 10 km/h; it would have taken 3 hours more than the scheduled time. Find the distance covered by the train.
The students of a class are made to stand in rows. If 3 students are extra in a row, there would be 1 row less. If 3 students are less in a row, there would be 2 rows more. Find the number of students in the class.
Solve the following pair of linear equations.
`x/a-y/b = 0`
ax + by = a2 + b2
The sum of digits of a two number is 15. The number obtained by reversing the order of digits of the given number exceeds the given number by 9. Find the given number.
Seven times a two-digit number is equal to four times the number obtained by reversing the digits. If the difference between the digits is 3. Find the number.
Ten years later, A will be twice as old as B and five years ago, A was three times as old as B. What are the present ages of A and B?
The present age of a father is three years more than three times the age of the son. Three years hence father's age will be 10 years more than twice the age of the son. Determine their present ages.
Father's age is three times the sum of age of his two children. After 5 years his age will be twice the sum of ages of two children. Find the age of father.