Advertisements
Advertisements
प्रश्न
Solve the following :
Find the area of the region lying between the parabolas : y2 = x and x2 = y.
उत्तर
For finding the points of intersection of the two parabolas, we equate the values of y2 from their equations.
From the equation x2 = y, y = `(x^2)/y`
∴ y = `(x^2)/(y)`
∴ `(x^2)/(y)` = x
∴ x2 – y = 0
∴ x(x3 – y) = 0
∴ x = 0 or x3 = y
i.e. x = 0 or x = 4
When x = 0, y = 0
When x = 4, y = `(4^2)/(4)` = 4
∴ the points of intersection are O(0, 0) and A(4, 4).
Required area = area of the region OBACO
= [area of the region ODACO] – [area of the region ODABO]
Now, area of the region ODACO
= area under the parabola y2 = 4x,
i.e. y = `2sqrt(x)` between x = 0 and x = 4
= `int_0^4 2sqrt(x)*dx`
= `[2 (x^(3/2))/(3/2)]_0^4`
= `2 xx (2)/(3) xx 4^(3/2) - 0`
= `(4)/(3) xx (2^3)`
= `(32)/(3)`
Area ofthe region ODABO
= area under the rabola x2 = 4y,
i.e. y = `x^2/(4)` between x = 0 and x = 4
= `int_0^4 (1)/(4)x^2*dx`
= `(1)/(4)[x^3/(3)]_0^4`
= `(1)/(4)(64/3 - 0)`
= `(16)/(3)`
∴ required area = `(32)/(3) - (16)/(3)`
= `(16)/(3)"sq units"`.
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5
Find the area of the region bounded by the following curves, X-axis and the given lines: xy = 2, x = 1, x = 4
Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4
Find the area of the region bounded by the parabola y2 = 16x and its latus rectum.
Find the area of the region included between y2 = 2x and y = 2x.
Find the area of the region included between: y2 = 4x, and y = x
Find the area of the region included between: y = x2 and the line y = 4x
Find the area of the region included between y = x2 + 3 and the line y = x + 3.
Choose the correct option from the given alternatives :
The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by ______.
Choose the correct option from the given alternatives :
The area bounded by the curve y = x3, the X-axis and the lines x = – 2 and x = 1 is
The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is ______.
Choose the correct option from the given alternatives :
The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is
Choose the correct option from the given alternatives :
The area bounded by the parabola y2 = x and the line 2y = x is
Choose the correct option from the given alternatives :
The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ `pi/(6)` and the X-axis is
Choose the correct option from the given alternatives :
The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is
Choose the correct option from the given alternatives :
The area bounded by the ellipse `x^2/a^2 y^2/b^2` = 1 and the line `x/a + y/b` = 1 is
The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.
Choose the correct option from the given alternatives :
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by
Choose the correct option from the given alternatives :
The area of the region included between the line x + y = 1 and the circle x2 + y2 = 1 is
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = `pi/(3)`
Solve the following :
Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.
The area bounded by the curve y2 = x2, and the line x = 8 is ______
The area bounded by the ellipse `x^2/4 + y^2/25` = 1 and the line `x/2 + y/5` = 1 is ______ sq.units
The area enclosed by the line 2x + 3y = 6 along X-axis and the lines x = 0, x = 3 is ______ sq.units
Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant
Using integration, find the area of the region bounded by the line 2y + x = 8 , X−axis and the lines x = 2 and x = 4
Find the area of the sector bounded by the circle x2+ y2 = 16, and the line y = x in the first quadrant
Find the area of the region bounded by the curve (y − 1)2 = 4(x + 1) and the line y = (x − 1)
The area bounded by the curve y = x3, the X-axis and the Lines x = –2 and x = 1 is ______.
Find the area of the region bounded by the curve y = x2 and the line y = 4.
Find the area common to the parabola y2 = x – 3 and the line x = 5.