Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternatives :
The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is
पर्याय
ab sq units
πab sq units
`pi/"ab" "sq units"`
πa2 sq units
उत्तर
πab sq units.
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`
Find the area of the region bounded by the following curves, X-axis and the given lines : x = 0, x = 5, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines : y2 = x, x = 0, x = 4
Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4
Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.
Find the area of the region included between y2 = 2x and y = 2x.
Find the area of the region included between: y2 = 4ax and the line y = x
Choose the correct option from the given alternatives :
The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by
Choose the correct option from the given alternatives :
The area bounded by the curve y = x3, the X-axis and the lines x = – 2 and x = 1 is
Choose the correct option from the given alternatives :
The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is
Choose the correct option from the given alternatives :
The area of the circle x2 + y2 = 25 in first quadrant is
Choose the correct option from the given alternatives :
The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is
Choose the correct option from the given alternatives :
The area bounded by the ellipse `x^2/a^2 y^2/b^2` = 1 and the line `x/a + y/b` = 1 is
Choose the correct option from the given alternatives :
The area enclosed between the two parabolas y2 = 4x and y = x is
The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.
Choose the correct option from the given alternatives :
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by
Choose the correct option from the given alternatives :
The area of the region included between the line x + y = 1 and the circle x2 + y2 = 1 is
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : 0 ≤ x ≤ 5, 0 ≤ y ≤ 2
Solve the following :
Find the area of the region in first quadrant bounded by the circle x2 + y2 = 4 and the X-axis and the line x = `ysqrt(3)`.
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = `pi/(3)`
Solve the following :
Find the area of the region lying between the parabolas : 4y2 = 9x and 3x2 = 16y
Solve the following :
Find the area enclosed between the circle x2 + y2 = 1 and the line x + y = 1, lying in the first quadrant.
Solve the following :
Find the area of the region bounded by the curve (y – 1)2 = 4(x + 1) and the line y = (x – 1).
Solve the following :
Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.
Solve the following :
Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.
The area of the region bounded by the curve y = sinx, X-axis and the lines x = 0, x = 4π is ______ sq.units
The area bounded by the curve y2 = x2, and the line x = 8 is ______
Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`
Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant
Find the area of the region bounded by the curve y2 = 8x, the X−axis and the given lines x = 1, x = 3, y ≥ 0
Find the area of the region bounded by the parabola x2 = 4y and The X-axis and the line x = 1, x = 4
Find the area of the region bounded by the curve y = sin x, the X−axis and the given lines x = − π, x = π
Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay
Find the area of the sector bounded by the circle x2+ y2 = 16, and the line y = x in the first quadrant