Advertisements
Advertisements
प्रश्न
Find the area of the region included between: y2 = 4ax and the line y = x
उत्तर
x2 = 4ax
x2 - 4ax = 0
x (x - 4a) = 0
x = 0 or x - 4a = 0
x = 0 or x = 4a
∴ y = x
∴ Points of intersectionre
(0, 0) and (4a, 4a)
the area bounded by a parabola and line = (OCBDO)
A = A (OABDO - (ΔOAB)
A = Area undercurve - Area underline
`A = int_0^(4a) 2 sqrt( ax )dx - int_0^(4a) x dx`
`A = 2sqrta [x^(3/2)/(3/2)]_0^(4a) - [x^2/2]_0^(4a)`
`A = 2sqrtaxx 2/3 [(4a)^(3/2) - 0 - 1/2 [(4a)^2 - 0]`
`A = 4^sqrta/3 [8a^(3/2) - 1/2][16a^2]`
`A = 32/3 a^2 - 8a^2`
`A = (32/3-8) a^2`
`A = (32 - 24)/3 a^2`
`A = 8/3 a^2`
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines: xy = 2, x = 1, x = 4
Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4
Find the area of the region bounded by the parabola y2 = 16x and its latus rectum.
Find the area of the region included between y2 = 2x and y = 2x.
Find the area of the region included between: y = x2 and the line y = 4x
Choose the correct option from the given alternatives :
The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by ______.
Choose the correct option from the given alternatives :
The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by
Choose the correct option from the given alternatives :
The area bounded by the curve y = x3, the X-axis and the lines x = – 2 and x = 1 is
The area enclosed between the parabola y2 = 4x and line y = 2x is ______.
Choose the correct option from the given alternatives :
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is ______.
Choose the correct option from the given alternatives :
The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is
Choose the correct option from the given alternatives :
The area under the curve y = `2sqrt(x)`, enclosed between the lines x = 0 and x = 1 is
Choose the correct option from the given alternatives :
The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is
Choose the correct option from the given alternatives :
The area bounded by the parabola y2 = x and the line 2y = x is
Choose the correct option from the given alternatives :
The area bounded by the parabola y = x2 and the line y = x is
The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.
Solve the following :
Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π
Solve the following :
Find the area of the region bounded by the curve (y – 1)2 = 4(x + 1) and the line y = (x – 1).
The area of the region bounded by the curve y = sinx, X-axis and the lines x = 0, x = 4π is ______ sq.units
The area of the region bounded by the ellipse x2/64 + y2/100 = 1, is ______ sq.units
The area bounded by the curve y2 = x2, and the line x = 8 is ______
The area bounded by the ellipse `x^2/4 + y^2/25` = 1 and the line `x/2 + y/5` = 1 is ______ sq.units
The area enclosed by the line 2x + 3y = 6 along X-axis and the lines x = 0, x = 3 is ______ sq.units
Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant
Find the area of the region bounded by the curve y2 = 8x, the X−axis and the given lines x = 1, x = 3, y ≥ 0
Find the area of the region bounded by the curve x2 = 12y, the Y−axis and the given lines y = 2, y = 4, x ≥ 0
Find the area of the region bounded by the parabola x2 = 4y and The X-axis and the line x = 1, x = 4
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4
Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay
Find the area of the sector bounded by the circle x2+ y2 = 16, and the line y = x in the first quadrant
Find the area of the region bounded by the curve y = x2 and the line y = 4.