मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following : Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following :

Find the area of the region bounded by the parabola y2 = x and the line y = x in the first quadrant.

बेरीज

उत्तर

To obtain the points of intersection of the line and the parabola, we equate the values of x from both the equations.

∴ y2 = y
∴ y2 – y = 0
∴ y(y – 1) = 0
∴ y = 0 or y = 1
When y = 0, x = 0
When y = 1, x = 1
∴ the points of intersection are O(0, 0) and A(1, 1). Required area:area of the region OCABO 
= area of the region OCADO – area of the region OBADO
Now, area of the region OCADO
= area under the parabola y2 = x i.e. y = `± sqrt(x)` (in the first quadrant) between x = 0 and x = 1

= `int_0^1 sqrt(x)*dx`

= `[(x^(3/2))/(3/2)]_0^1`

= `(2)/(3) xx (1 - 0)`

= `(2)/(3)`
Area of the region OBADO
= area under the line y = x between x  0 and x = 1

= `int_0^1x*dx`

=`[x^2/2]_0^1`

=`(1)/(2) - 0`

= `(2)/(3)`
∴ required area = `(2)/(3) - (1)/(2)`

= `(1)/(6)"sq unit"`.

shaalaa.com
Area Bounded by the Curve, Axis and Line
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Application of Definite Integration - Miscellaneous Exercise 5 [पृष्ठ १९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 5 Application of Definite Integration
Miscellaneous Exercise 5 | Q 2.06 | पृष्ठ १९०

संबंधित प्रश्‍न

Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5


Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4


Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`


Find the area of the region bounded by the parabola y2 = 16x and its latus rectum.


Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.


Find the area of the region included between y2 = 2x and y = 2x.


Find the area of the region included between: y2 = 4ax and the line y = x


Choose the correct option from the given alternatives :

The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by ______.


Choose the correct option from the given alternatives :

The area bounded by the parabola y2 = 8x, the X-axis and the latus rectum is


Choose the correct option from the given alternatives :

The area of the circle x2 + y2 = 25 in first quadrant is 


Choose the correct option from the given alternatives :

The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is


Choose the correct option from the given alternatives : 

The area bounded by the parabola y2 = x and the line 2y = x is


Choose the correct option from the given alternatives : 

The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ `pi/(6)` and the X-axis is


Choose the correct option from the given alternatives :

The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is


Choose the correct option from the given alternatives :

The area enclosed between the two parabolas y2 = 4x and y = x is


The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.


Choose the correct option from the given alternatives :

The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : 0 ≤ x ≤ 5, 0 ≤ y ≤ 2


Solve the following :

Find the area of the region in first quadrant bounded by the circle x2 + y2 = 4 and the X-axis and the line x = `ysqrt(3)`.


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π


Solve the following :

Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = `pi/(3)`


Solve the following :

Find the area of the region lying between the parabolas : 4y2 = 9x and 3x2 = 16y


The area of the region bounded by the ellipse x2/64 + y2/100 = 1, is ______ sq.units


The area bounded by the parabola y2 = x along the X-axis and the lines x = 0, x = 2 is ______ sq.units


The area bounded by the curve y2 = x2, and the line x = 8 is ______


The area enclosed by the line 2x + 3y = 6 along X-axis and the lines x = 0, x = 3 is ______ sq.units


Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant 


Find the area bounded by the curve y = sin x, the lines x = 0 and x = `pi/2`


Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant


Find the area of the region bounded by the curve y2 = 8x, the X−axis and the given lines x = 1, x = 3, y ≥ 0


Find the area of the region bounded by the curve x2 = 12y, the Y−axis and the given lines y = 2, y = 4, x ≥ 0


Find the area of the region bounded by the parabola y2 = 16x and the line x = 4


Find the area of the region bounded by the curve y = sin x, the X−axis and the given lines x = − π, x = π


Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay


Find the area of the sector bounded by the circle x2+ y2 = 16, and the line y = x in the first quadrant


Find the area of the region bounded by the curve y2 = 4x, the X-axis and the lines x = 1, x = 4 for y ≥ 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×