Advertisements
Advertisements
प्रश्न
Solve the following :
Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.
उत्तर
By symmetry of the parabola, the required area is 2 times the area of the region ABCD.
From the equation of the parabola, x2 = `y/(4)`
the first quadrant, x > 0
∴ x = `(1)/(2)sqrt(y)`
∴ required area = `int_1^4 x*dy`
= `(1)/(2) int_1^4 sqrt(y)*dy`
= `(1)/(2)[y^(3/2)/(3/2)]_1^4`
= `(1)/(2) xx (2)/(3)[4^(3/2) - 1^(3/2)]`
= `(1)/(3)[(2^2)^(3/2) - 1]`
= `(1)/(3)[8 - 1]`
= `(7)/(3)"sq units"`.
संबंधित प्रश्न
Find the area of the region bounded by the following curves, X-axis and the given lines: x = 2y, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`
Find the area of the region bounded by the following curves, X-axis and the given lines: xy = 2, x = 1, x = 4
Find the area of the region bounded by the parabola y2 = 16x and its latus rectum.
Find the area of the region bounded by the parabola: y = 4 – x2 and the X-axis.
Find the area of the region included between y2 = 2x and y = 2x.
Find the area of the region included between: y2 = 4x, and y = x
Find the area of the region included between: y = x2 and the line y = 4x
Find the area of the region included between: y2 = 4ax and the line y = x
Find the area of the region included between y = x2 + 3 and the line y = x + 3.
Choose the correct option from the given alternatives :
The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by
The area enclosed between the parabola y2 = 4x and line y = 2x is ______.
Choose the correct option from the given alternatives :
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is ______.
Choose the correct option from the given alternatives :
The area of the circle x2 + y2 = 25 in first quadrant is
Choose the correct option from the given alternatives :
The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is
Choose the correct option from the given alternatives :
The area enclosed between the curve y = cos 3x, 0 ≤ x ≤ `pi/(6)` and the X-axis is
Choose the correct option from the given alternatives :
The area bounded by the ellipse `x^2/a^2 y^2/b^2` = 1 and the line `x/a + y/b` = 1 is
Choose the correct option from the given alternatives :
The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is
Choose the correct option from the given alternatives :
The area of the region included between the parabolas y2 = 4ax and x2 = 4ay, (a > 0) is given by
Choose the correct option from the given alternatives :
The area of the region included between the line x + y = 1 and the circle x2 + y2 = 1 is
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : 0 ≤ x ≤ 5, 0 ≤ y ≤ 2
Solve the following :
Find the area of the region in first quadrant bounded by the circle x2 + y2 = 4 and the X-axis and the line x = `ysqrt(3)`.
Solve the following :
Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.
The area of the region bounded by the ellipse x2/64 + y2/100 = 1, is ______ sq.units
The area bounded by the curve y2 = x2, and the line x = 8 is ______
The area bounded by the parabola y2 = 32x the X-axis and the latus rectum is ______ sq.units
The area bounded by the ellipse `x^2/4 + y^2/25` = 1 and the line `x/2 + y/5` = 1 is ______ sq.units
Find the area bounded by the curve y2 = 36x, the line x = 2 in first quadrant
Find the area of the region bounded by the curve y2 = 8x, the X−axis and the given lines x = 1, x = 3, y ≥ 0
Find the area of the region bounded by the curve x2 = 12y, the Y−axis and the given lines y = 2, y = 4, x ≥ 0
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4
Find the area of the region bounded by the curve y = sin x, the X−axis and the given lines x = − π, x = π
The area bounded by the curve y = x3, the X-axis and the Lines x = –2 and x = 1 is ______.
Find the area of the region bounded by the curve y2 = 4x, the X-axis and the lines x = 1, x = 4 for y ≥ 0.
Find the area common to the parabola y2 = x – 3 and the line x = 5.
Find the area bounded by the lines y = 5x – 10, X-axis and x = 5.