Advertisements
Advertisements
प्रश्न
The area bounded by the parabola y2 = 32x the X-axis and the latus rectum is ______ sq.units
पर्याय
`512/3`
`512/5`
512
`64/3`
उत्तर
`512/3`
APPEARS IN
संबंधित प्रश्न
Find the area of the region bounded by the following curves, X-axis and the given lines: y = 2x, x = 0, x = 5
Find the area of the region bounded by the following curves, X-axis and the given lines : y = sin x, x = 0, x = `pi/(2)`
Find the area of the region bounded by the following curves, X-axis and the given lines : x = 0, x = 5, y = 0, y = 4
Find the area of the region bounded by the following curves, X-axis and the given lines: y2 = 16x, x = 0, x = 4
Find the area of the region bounded by the parabola y2 = 16x and its latus rectum.
Find the area of the region included between: y2 = 4x, and y = x
Find the area of the region included between y = x2 + 3 and the line y = x + 3.
Choose the correct option from the given alternatives :
The area bounded by the regional 1 ≤ x ≤ 5 and 2 ≤ y ≤ 5 is given by ______.
Choose the correct option from the given alternatives :
The area of the region enclosed by the curve y = `(1)/x`, and the lines x = e, x = e2 is given by
Choose the correct option from the given alternatives :
The area bounded by the curve y = x3, the X-axis and the lines x = – 2 and x = 1 is
Choose the correct option from the given alternatives :
The area of the region bounded between the line x = 4 and the parabola y2 = 16x is ______.
The area of the region bounded by y = cos x, Y-axis and the lines x = 0, x = 2π is ______.
Choose the correct option from the given alternatives :
The area of the region bounded by the ellipse `x^2/a^2 + y^2/b^2` = 1 is
Choose the correct option from the given alternatives :
The area bounded by y = `sqrt(x)` and the x = 2y + 3, X-axis in first quadrant is
Choose the correct option from the given alternatives :
The area bounded by the ellipse `x^2/a^2 y^2/b^2` = 1 and the line `x/a + y/b` = 1 is
Choose the correct option from the given alternatives :
The area bounded by the parabola y = x2 and the line y = x is
The area bounded by the curve y = tan x, X-axis and the line x = `pi/(4)` is ______.
Choose the correct option from the given alternatives :
The area of the region bounded by x2 = 16y, y = 1, y = 4 and x = 0 in the first quadrant, is
Choose the correct option from the given alternatives :
The area of the region included between the line x + y = 1 and the circle x2 + y2 = 1 is
Solve the following :
Find the area of the region bounded by the following curve, the X-axis and the given lines : y = sin x, x = 0, x = π
Solve the following :
Find the area of the region lying between the parabolas : y2 = x and x2 = y.
Solve the following :
Find the area of the region bounded by the curve (y – 1)2 = 4(x + 1) and the line y = (x – 1).
Solve the following :
Find the area of the region bounded by the straight line 2y = 5x + 7, X-axis and x = 2, x = 5.
Solve the following :
Find the area of the region bounded by the curve y = 4x2, Y-axis and the lines y = 1, y = 4.
The area of the region bounded by the curve y = sinx, X-axis and the lines x = 0, x = 4π is ______ sq.units
The area of the region bounded by the ellipse x2/64 + y2/100 = 1, is ______ sq.units
The area bounded by the parabola y2 = x along the X-axis and the lines x = 0, x = 2 is ______ sq.units
The area bounded by the curve y2 = x2, and the line x = 8 is ______
Find the area of the region bounded by the parabola y2 = 32x and its Latus rectum in first quadrant
Find the area of the region bounded by the curve x2 = 12y, the Y−axis and the given lines y = 2, y = 4, x ≥ 0
Find the area of the region bounded by the parabola y2 = 16x and the line x = 4
Find the area of the region bounded by the curves y2 = 4ax and x2 = 4ay
Find the area of the sector bounded by the circle x2+ y2 = 16, and the line y = x in the first quadrant
The area bounded by the curve y = x3, the X-axis and the Lines x = –2 and x = 1 is ______.
Find the area of the region lying in the first quadrant and bounded by y = 4x2, x = 0, y = 2 and y = 4.
Find the area bounded by the lines y = 5x – 10, X-axis and x = 5.