Advertisements
Advertisements
प्रश्न
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0.5
उत्तर
{x} = 0.5
∴ x – |x| = 0.5
It is obvious that
x = m + 0.5, m ∈ Z.
APPEARS IN
संबंधित प्रश्न
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f
Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7
Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `(6x - 7)/3`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `sqrt(4x + 5)`
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x + 4| ≥ 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x| ≤ 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2|x| = 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
[x + [x + [x]]] = 9
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} > 4
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2{x} = x + [x]
Answer the following:
Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}
Answer the following:
Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8
Answer the following:
Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
[x − 2] + [x + 2] + {x} = 0
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
`[x/2] + [x/3] = (5x)/6`
Answer the following:
Find (f ° g) (x) and (g ° f) (x)
f(x) = ex, g(x) = log x
Answer the following:
Find f(x) if g(x) = `1 + sqrt(x)` and f[g(x)] = `3 + 2sqrt(x) + x`
If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals ______
If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______
If f(x) =x4, g(x) = 6x – 2, then g[f(x)] = ______.
Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.
If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.
lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to ______.
(where [.] denotes greatest integer function)