Advertisements
Advertisements
प्रश्न
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `(6x - 7)/3`
उत्तर
f(x) = `(6x - 7)/3`
Let f(x1) = f(x2)
∴ `(6x_1 - 7)/3 = (6x_2 - 7)/3`
∴ x1 = x2
∴ f is a one-one function
f(x) = `(6x - 7)/3` = y (say)
∴ x = `(3"y" + 7)/6`
∴ For every y, we can get x
∴ f is an onto function.
∴ x = `(3y + 7)/6`
= f–1 (y)
Replacing y by x, we get
∴ f–1 (x) = `(3x + 7)/6`
APPEARS IN
संबंधित प्रश्न
Let f : {2, 4, 5} → {2, 3, 6} and g : {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down g ° f
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g
Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7
Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`
Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 5x2
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 9x3 + 8
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 3)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x − 4| + |x − 2| = 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
[x + [x + [x]]] = 9
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0.5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2{x} = x + [x]
Answer the following:
Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}
Answer the following:
Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`
Answer the following:
If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
|x2 − x − 6| = x + 2
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
−2 < [x] ≤ 7
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
`[x/2] + [x/3] = (5x)/6`
Answer the following:
Find the domain of the following function.
f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`
Answer the following:
Find f(x) if g(x) = `1 + sqrt(x)` and f[g(x)] = `3 + 2sqrt(x) + x`
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals ______
If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______
Let F(x) = ex, G(x) = e-x and H(x) = G[F(x)], where x is a real variable. Then `"dH"/"dx"`at x = 0 is ______.
If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______
If f(x) =bx - 7 and f(-1) = 4, then b = ______.
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to ______.
(where [.] denotes greatest integer function)