Advertisements
Advertisements
प्रश्न
Answer the following:
Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`
उत्तर
f(x) = 256x4, g(x) = `sqrt(x)`
(f ° g) (x) = f(g(x)) = `"f"(sqrt(x)) = 256 (sqrt(x))^4` = 256x2
(g ° f) (x) = g(f(x)) = g(256x4) = `sqrt(256x^4)` = 16x2
APPEARS IN
संबंधित प्रश्न
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f
Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `(6x - 7)/3`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `sqrt(4x + 5)`
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1.2)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x| ≤ 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0.5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2{x} = x + [x]
Answer the following:
Find whether the following function is onto or not.
f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z
Answer the following:
Find whether the following function is onto or not.
f : R → R defined by f(x) = x2 + 3 for all x ∈ R
Answer the following:
Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}
Answer the following:
Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8
Answer the following:
If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
|x2 − 9| + |x2 − 4| = 5
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
2[2x − 5] − 1 = 7
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
`[x/2] + [x/3] = (5x)/6`
Answer the following:
Find (f ° g) (x) and (g ° f) (x)
f(x) = ex, g(x) = log x
Answer the following:
Find (f ° f) (x) if f(x) = `x/sqrt(1 + x^2)`
Answer the following:
Find (f ° f) (x) if f(x) = `(2x + 1)/(3x - 2)`
The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is
If f(x) =bx - 7 and f(-1) = 4, then b = ______.
Inverse of the function y = 5 – 10x is ______.
If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.
If z ≠ 0, then `int_(x = 0)^100` [arg | z |] dx is ______.
(where [.] denotes the greatest integer function)
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to ______.
(where [.] denotes greatest integer function)