Advertisements
Advertisements
प्रश्न
Solve the following pairs of equations:
`(3)/(5) x - (2)/(3) y + 1` = 0
`(1)/(3) y + (2)/(5) x ` = 4
उत्तर
`(3)/(5) x - (2)/(3) y + 1` = 0
⇒ 9x - 10y + 15 = 0
⇒ 9x - 10y = -15 ....(i)
`(1)/(3)y + (2)/(5)x` = 4
⇒ 5y + 6x = 60
⇒ 6x + 5y = 60 ....(ii)
Multiplying eqn. (ii) by 2, we get
12x + 10y = 120 ....(iii)
Adding eqns. (i) and (iii), we get
21x = 105
⇒ x = 5
Substituting the value of x in eqn. (ii), we get
6(5) + 5y = 60
⇒ 30 + 5y = 60
⇒ 5y = 30
⇒ y = 6
Thus, the solution set is (5,6).
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13x+ 11y = 70
11x + 13y = 74
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
41x + 53y = 135
53x + 41y = 147
Find the value of m, if x = 2, y = 1 is a solution of the equation 2x + 3y = m.
10% of x + 20% of y = 24
3x - y = 20
Solve the following simultaneous equations :
6x + 3y = 7xy
3x + 9y = 11xy
Solve the following simultaneous equations:
13a - 11b = 70
11a - 13b = 74
Solve the following pairs of equations:
y - x = 0.8
`(13)/(2(x + y)) = 1`
Solve the following pairs of equations:
`(5)/(x + y) - (2)/(x - y)` = -1
`(15)/(x + y) + (7)/(x - y)` = 10.
In a triangle, the sum of two angles is equal to the third angle. If the difference between these two angles is 20°, determine all the angles.