Advertisements
Advertisements
प्रश्न
Solve the following pairs of equations:
y - x = 0.8
`(13)/(2(x + y)) = 1`
उत्तर
The given equations are
y - x = 0.8
-x + y = 0.8 ....(i)
And, `(13)/(2(x + y)) = 1`
⇒ 13 = 2x + 2y
⇒ 2x + 2y = 13 ....(ii)
Multiplying eqn. (i) by 2, we get
-2x + 2y = 1.6 ....(iv)
Adding eqns. (ii) and (iii), we get
4y = 14.6
⇒ y = 3.65
Substituting the value of y in eqn. (i), we get
-x + 3.65 = 0.8
⇒ -x = -2.85
⇒ x = 2.85
Thus, the solution set is (2.85, 3.65).
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13 + 2y = 9x
3y = 7x
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13x+ 11y = 70
11x + 13y = 74
Solve for x and y:
4x = 17 - `[ x - y ]/8`
2y + x = 2 + `[ 5y + 2 ]/3`
Solve the following simultaneous equations:
103a + 51b = 617
97a + 49b = 583
Solve the following pairs of equations:
`(3)/(5) x - (2)/(3) y + 1` = 0
`(1)/(3) y + (2)/(5) x ` = 4
If 2x + y = 23 and 4x - y = 19 : find the value of x - 3y and 5y - 2x.
`(3)/x - (2)/y` = 0 and `(2)/x + (5)/y` = 19, Hence, find a if y = ax + 3.
The sum of the numerator and denominator of a fraction is 12. If the denominator is increased by 3, the fraction becomes `(1)/(2)`. Find the fraction.
Anil and Sunita have incomes in the ratio 3 : 5. If they spend in the ratio 1 : 3, each saves T 5000. Find the income of each.
Two mobiles S1 and S2 are sold for Rs. 10,490 making 4% profit on S1 and 6% on S2. If the two mobiles are sold for Rs.10,510, a profit of 6% is made on S1 and 4% on S2. Find the cost price of both the mobiles.