Advertisements
Advertisements
प्रश्न
If 2x + y = 23 and 4x - y = 19 : find the value of x - 3y and 5y - 2x.
उत्तर
2x + y = 23 ........(1)
4x - y = 19 ........(2)
Adding (1) and (2),
6x = 42
⇒ x = 7
∴ y = 23 - 2x
= 23 - 14
= 9
∴ x - 3y
= 7 - 3(9)
= 7 - 27
= -20
5y - 2x
= 5(9) - 2(7)
= 45 - 14
= 31.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
3x - y = 23
`x/3 + y/4 = 4`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve :
`4x + [ x - y ]/8 = 17`
`2y + x - [ 5y + 2 ]/3 = 2`
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
Solve the following pairs of equations:
`(3)/(5) x - (2)/(3) y + 1` = 0
`(1)/(3) y + (2)/(5) x ` = 4
Seven more than a 2-digit number is equal to two less than the number obtained by reversing the digits. The sum of the digits is 5. Find the number.
The ratio of two numbers is `(2)/(5)`. If 4 is added in first and 32 is subtracted from the second, the ratio becomes the reciprocal of the original ratio. Find the numbers.
Anil and Sunita have incomes in the ratio 3 : 5. If they spend in the ratio 1 : 3, each saves T 5000. Find the income of each.
An eraser costs Rs. 1.50 less than a sharpener. Also, the cost of 4 erasers and 3 sharpeners is Rs.29. Taking x and y as the costs (in Rs.) of an eraser and a sharpener respectively, write two equations for the above statements and find the value of x and y.