Advertisements
Advertisements
प्रश्न
Solve the following pairs of equations:
`(3)/(5) x - (2)/(3) y + 1` = 0
`(1)/(3) y + (2)/(5) x ` = 4
उत्तर
`(3)/(5) x - (2)/(3) y + 1` = 0
⇒ 9x - 10y + 15 = 0
⇒ 9x - 10y = -15 ....(i)
`(1)/(3)y + (2)/(5)x` = 4
⇒ 5y + 6x = 60
⇒ 6x + 5y = 60 ....(ii)
Multiplying eqn. (ii) by 2, we get
12x + 10y = 120 ....(iii)
Adding eqns. (i) and (iii), we get
21x = 105
⇒ x = 5
Substituting the value of x in eqn. (ii), we get
6(5) + 5y = 60
⇒ 30 + 5y = 60
⇒ 5y = 30
⇒ y = 6
Thus, the solution set is (5,6).
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[5y]/2 - x/3 = 8`
`y/2 + [5x]/3 = 12`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
41x + 53y = 135
53x + 41y = 147
Solve for x and y:
4x = 17 - `[ x - y ]/8`
2y + x = 2 + `[ 5y + 2 ]/3`
Solve :
`[ 7 + x ]/5 - [ 2x - y ]/4 = 3y - 5`
`[5y - 7]/2 + [ 4x - 3 ]/6 = 18 - 5x`
Solve the following simultaneous equations :
3(2u + v) = 7uv
3(u + 3v) = 11uv
Solve the following pairs of equations:
`(2)/(x + 1) - (1)/(y - 1) = (1)/(2)`
`(1)/(x + 1) + (2)/(y - 1) = (5)/(2)`
The ratio of two numbers is `(2)/(5)`. If 4 is added in first and 32 is subtracted from the second, the ratio becomes the reciprocal of the original ratio. Find the numbers.
The present ages of Kapil and Karuna are in the ratio 2 : 3. Six years later, the ratio will be 5 : 7. Find their present ages.
A person goes 8 km downstream in 40 minutes and returns in 1 hour. Determine the speed of the person in still water and the speed of the stream.
Salman and Kirti start at the same time from two places 28 km apart. If they walk in the same direction, Salman overtakes Kirti in 28 hours but if they walk in the opposite directions, they meet in 4 hours. Find their speeds (in km/h).