Advertisements
Advertisements
प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[5y]/2 - x/3 = 8`
`y/2 + [5x]/3 = 12`
उत्तर
The given pair of linear equations are
`[5y]/2 - x/3 = 8`
⇒ `- x/3 + [5y]/2 = 8` .....(1) [ On Similifying ]
`y/2 + [5x]/3 = 12`
⇒ `[5x]/3 + y/2 = 12` .....(2) [ On Similifying ]
Multiply equation (1) by 5, we get
` -[5x]/3 + [25y]/2 = 40` ......(3)
Adding equation (3) and (2)
` -[5x]/3 + [25y]/2 = 40`
+ `[5x]/3 + y/2 = 12`
`[26y]/2 = 52`
⇒ 13y = 52
⇒ y = 4
Substituting y = 4 in equation (1), We get
`- x/3 + [5(4)]/2 = 8`
⇒ `-x/3 = 8 - 10`
⇒ x = 6
∴ Solution is x = 6 and y = 4.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients:
y = 2x - 6; y = 0
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve :
`4x + [ x - y ]/8 = 17`
`2y + x - [ 5y + 2 ]/3 = 2`
Solve the following simultaneous equations :
2(3u - v) = 5uv
2(u + 3v) = 5uv
Solve the following simultaneous equations:
41x + 53y = 135
53x + 41y = 147
Solve the following simultaneous equations:
65x - 33y = 97
33x - 65y = 1
Solve the following simultaneous equations:
103a + 51b = 617
97a + 49b = 583
Solve the following pairs of equations:
`(3)/(5) x - (2)/(3) y + 1` = 0
`(1)/(3) y + (2)/(5) x ` = 4
Sunil and Kafeel both have some oranges. If Sunil gives 2 oranges to Kafeel, then Kafeel will have thrice as many as Sunil. And if Kafeel gives 2 oranges to Sunil, then they will have the same numbers of oranges. How many oranges does each have?
A and B can build a wall in `6(2)/(3)` days. If A's one day work is `1(1)/(4)` of one day work of B, find in 4 how many days A and B alone can build the wall.