Advertisements
Advertisements
प्रश्न
Solve the following problem.
A police car travels towards a stationary observer at a speed of 15 m/s. The siren on the car emits a sound of frequency 250 Hz. Calculate the recorded frequency. The speed of sound is 340 m/s.
उत्तर
Given: vs = 15 m/s, n0 = 250 Hz, v = 340 m/s
To find: Frequency (n)
Formula: n = `"n"_0("v"/("v" - "v"_"s"))`
Calculation: As the source approaches listener, apparent frequency is given by,
n = `250 (340/(340 - 15)) = 3400/13`
∴ n = 261.54 Hz
The frequency heard by the audience as the car approaches stand is 261.54 Hz.
APPEARS IN
संबंधित प्रश्न
The engine of a train sounds a whistle at frequency v. The frequency heard by a passenger is
The change in frequency due to Doppler effect does not depend on
Answer briefly.
State the expression for apparent frequency when the source is stationary and the listener is
- moving towards the source
- moving away from the source
The sound emitted from the siren of an ambulance has a frequency of 1500 Hz. The speed of sound is 340 m/s. Calculate the difference in frequencies heard by a stationary observer if the ambulance initially travels towards and then away from the observer at a speed of 30 m/s.
What is meant by the Doppler effect?
The speed of a wave in a certain medium is 900 m/s. If 3000 waves passes over a certain point of the medium in 2 minutes, then compute its wavelength?
Consider a mixture of 2 mol of helium and 4 mol of oxygen. Compute the speed of sound in this gas mixture at 300 K.
A sound source and listener are both stationary and a strong wind is blowing. Is there a Doppler effect?
How do animals sense impending danger of hurricane?
The difference between the apparent frequency of a source of sound as perceived by the observer during its approach and recession is 2% of the frequency of the source. If the speed of sound in air is 300 ms-1, then the velocity of the source is ______.
A source of sound is moving with constant velocity of 30 mis emitting a note of frequency 256 Hz. The ratio of frequencies observed by a stationary observer while the source is approaching him and after it crosses him is ______. (speed of sound in air = 330 m/s)
An observer moves towards a stationary source of sound with a velocity one-fifth of the velocity of sound. The percentage increase in the apparent frequency heard by the observer will be ______.
The pitch of the whistle of an engine appears to drop to`(5/6)^"th"` of original value when it passes a stationary observer. If the speed of sound in air is 350 m/s then the speed of engine is ____________.
If a star appearing yellow starts accelerating towards the earth, its colour appears to be turned ______.
A car sounding a horn of frequency 1000 Hz passes au observer. The ratio of frequencies of the horn noted by the observer before and after passing of the car is 11 : 9. If the speed of sound is 'V', the speed of the car is ______.
With what velocity an observer should move relative to a stationary source so that a sound of double the frequency of source is heard by an observer?
A train whistling at constant frequency is moving towards a station at a constant speed V. The train goes past a stationary observer on the station. The frequency n ′ of the sound as heard by the observer is plotted as a function of time t (figure). Identify the expected curve.
A sitar wire is replaced by another wire of same length and material but of three times the earlier radius. If the tension in the wire remains the same, by what factor will the frequency change?
The frequency of a car horn encountered a change from 400 Hz to 500 Hz, when the car approaches a vertical wall. If the speed of sound is 330 m/s. Then the speed of car is ______ km/h.
When a sound source of frequency n is approaching a stationary observer with velocity u than the apparent change in frequency is Δn1 and when the same source is receding with velocity u from the stationary observer than the apparent change in frequency is Δn2. Then ______.
When an engine passes near to a stationary observer then its apparent frequencies occurs in the ratio 5/3. If the velocity of engine is ______.
A racing car moving towards a cliff sounds its horn. The sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If V is the velocity of sound, the velocity of the car is ______.
The frequency of echo will be ______ Hz if the train blowing a whistle of frequency 320 Hz is moving with a velocity of 36 km/h towards a hill from which an echo is heard by the train driver. The velocity of sound in air is 330 m/s.
A whistle producing sound waves of frequencies 9500 Hz and above is approaching a stationary person with speed v ms-1. The velocity of sound in air is 300 ms-1. If the person can hear frequencies up to a maximum of 10,000 HZ, the maximum value of v up to which he can hear the whistle is ______.
The pitch of the whistle of an engine appears to drop by 20% of its original value when it passes a stationary observer. If the speed of sound in the air is 350 m/s, then the speed of the engine (in m/s) is ______.