Advertisements
Advertisements
प्रश्न
Answer briefly.
State the expression for apparent frequency when the source is stationary and the listener is
- moving towards the source
- moving away from the source
उत्तर
- Let, n = actual frequency of the source.
n0 = apparent frequency of the source.
v = velocity of sound in air.
vs = velocity of the source.
vL = velocity of the listener. - If listener is moving towards source then apparent frequency is given by,
n = `"n"_0(("v + v"_"L")/"v")`, i.e., apparent frequency increases. - If listener is receding away from source then apparent frequency is given by,
n = `"n"_0(("v - v"_"L")/"v")`, i.e., apparent frequency decreases.
APPEARS IN
संबंधित प्रश्न
A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium. (a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propagation? (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after every 20 s), is the frequency of the note produced by the whistle equal to 1/20 or 0.05 Hz
The change in frequency due to Doppler effect does not depend on
Answer briefly.
What is Doppler effect?
State the expression for apparent frequency when listener is stationary and source is moving towards the listener.
The sound emitted from the siren of an ambulance has a frequency of 1500 Hz. The speed of sound is 340 m/s. Calculate the difference in frequencies heard by a stationary observer if the ambulance initially travels towards and then away from the observer at a speed of 30 m/s.
What is meant by the Doppler effect?
Discuss the following case:
Source in motion and Observer at rest
- Source moves towards observer
- Source moves away from the observer
The speed of a wave in a certain medium is 900 m/s. If 3000 waves passes over a certain point of the medium in 2 minutes, then compute its wavelength?
N tuning forks are arranged in order of increasing frequency and any two successive tuning forks give n beats per second when sounded together. If the last fork gives double the frequency of the first (called as octave), Show that the frequency of the first tuning fork is f = (N – 1)n.
A sound source and listener are both stationary and a strong wind is blowing. Is there a Doppler effect?
How do animals sense impending danger of hurricane?
Two cars moving in opposite directions approach each other with speed of 22 m/s and 16.5 m/s respectively. The driver of the first car blows a horn having a frequency 400 Hz. The frequency heard by the driver of the second car is [velocity of sound 340 m/s]: ____________.
An observer moves towards a stationary source of sound with a velocity one-fifth of the velocity of sound. The percentage increase in the apparent frequency heard by the observer will be ______.
A source of sound is moving towards a stationary observer with velocity 'Vs' and then moves away with velocity 'Vs'. Assume that the medium through which the sound waves travel is at rest, if 'V' is the velocity of sound and 'n' is the frequency emitted by the source, then the difference between the apparent frequencies heard by the observer is ______.
With what velocity an observer should move relative to a stationary source so that a sound of double the frequency of source is heard by an observer?
A train, standing in a station yard, blows a whistle of frequency 400 Hz in still air. The wind starts blowing in the direction from the yard to the station with a speed of 10 m/s. Given that the speed of sound in still air is 340 m/s ______.
- the frequency of sound as heard by an observer standing on the platform is 400 Hz.
- the speed of sound for the observer standing on the platform is 350 m/s.
- the frequency of sound as heard by the observer standing on the platform will increase.
- the frequency of sound as heard by the observer standing on the platform will decrease.
When a sound source of frequency n is approaching a stationary observer with velocity u than the apparent change in frequency is Δn1 and when the same source is receding with velocity u from the stationary observer than the apparent change in frequency is Δn2. Then ______.
The frequency of echo will be ______ Hz if the train blowing a whistle of frequency 320 Hz is moving with a velocity of 36 km/h towards a hill from which an echo is heard by the train driver. The velocity of sound in air is 330 m/s.
A whistle producing sound waves of frequencies 9500 Hz and above is approaching a stationary person with speed v ms-1. The velocity of sound in air is 300 ms-1. If the person can hear frequencies up to a maximum of 10,000 HZ, the maximum value of v up to which he can hear the whistle is ______.
The observer is moving with velocity 'v0' towards the stationary source of sound and then after crossing moves away from the source with velocity 'v0'. Assume that the medium through which the sound waves travel is at rest. If v is the velocity of sound and n is the frequency emitted by the source, then the difference between apparent frequencies heard by the observer is ______.
The pitch of the whistle of an engine appears to drop by 20% of its original value when it passes a stationary observer. If the speed of sound in the air is 350 m/s, then the speed of the engine (in m/s) is ______.