Advertisements
Advertisements
प्रश्न
The engine of a train sounds a whistle at frequency v. The frequency heard by a passenger is
पर्याय
\[> v\]
\[< v\]
\[= \frac{1}{v}\]
\[= v\]
उत्तर
\[= v\]
For the Doppler effect to occur, there must be relative motion between the source and the observer. However, this is not the case here. Hence, the frequency heard by the passenger is υ.
APPEARS IN
संबंधित प्रश्न
In discussing Doppler effect, we use the word "apparent frequency". Does it mean that the frequency of the sound is still that of the source and it is some physiological phenomenon in the listener's ear that gives rise to Doppler effect? Think for the observer approaching the source and for the source approaching the observer.
Answer briefly.
State the expression for apparent frequency when source of sound and listener are
- moving towards each other
- moving away from each other
Discuss the following case:
Source in motion and Observer at rest
- Source moves towards observer
- Source moves away from the observer
Discuss the following case-
Both are in motion
- Source and Observer approach each other
- Source and Observer resides from each other
- Source chases Observer
- Observer chases Source
A ship in a sea sends SONAR waves straight down into the seawater from the bottom of the ship. The signal reflects from the deep bottom bedrock and returns to the ship after 3.5 s. After the ship moves to 100 km it sends another signal which returns back after 2 s. Calculate the depth of the sea in each case and also compute the difference in height between two cases.
A sound source and listener are both stationary and a strong wind is blowing. Is there a Doppler effect?
How do animals sense impending danger of hurricane?
Two cars moving in opposite directions approach each other with speed of 22 m/s and 16.5 m/s respectively. The driver of the first car blows a horn having a frequency 400 Hz. The frequency heard by the driver of the second car is [velocity of sound 340 m/s]: ____________.
A bus is moving with a velocity of 5 m is towards a wall. The driver blows the horn of frequency 165 Hz. If the speed of sound in air is 335 m is, then after reflection of sound wave, the number of beats per second heard by the passengers in the bus will be ______.
An observer moves towards a stationary source of sound with a velocity one-fifth of the velocity of sound. The percentage increase in the apparent frequency heard by the observer will be ______.
The pitch of the whistle of an engine appears to drop to`(5/6)^"th"` of original value when it passes a stationary observer. If the speed of sound in air is 350 m/s then the speed of engine is ____________.
A source of sound is moving towards a stationary observer with velocity 'Vs' and then moves away with velocity 'Vs'. Assume that the medium through which the sound waves travel is at rest, if 'V' is the velocity of sound and 'n' is the frequency emitted by the source, then the difference between the apparent frequencies heard by the observer is ______.
A train moving at 25 m/s emits a whistle of frequency 200 Hz. If the speed of sound in air is 340 m/s, find the frequency observed by a stationary observer.
- if the observer is in front of the source.
- if the observer is behind the train.
The period of rotation of the sun at its equator is T and its radius is R. Then the Doppler wavelength shift expected for light with wavelength λ emitted from the edge of the sun's disc is: [c = speed of light]
When an engine passes near to a stationary observer then its apparent frequencies occurs in the ratio 5/3. If the velocity of engine is ______.
A racing car moving towards a cliff sounds its horn. The sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If V is the velocity of sound, the velocity of the car is ______.
The frequency of echo will be ______ Hz if the train blowing a whistle of frequency 320 Hz is moving with a velocity of 36 km/h towards a hill from which an echo is heard by the train driver. The velocity of sound in air is 330 m/s.
A whistle producing sound waves of frequencies 9500 Hz and above is approaching a stationary person with speed v ms-1. The velocity of sound in air is 300 ms-1. If the person can hear frequencies up to a maximum of 10,000 HZ, the maximum value of v up to which he can hear the whistle is ______.
The observer is moving with velocity 'v0' towards the stationary source of sound and then after crossing moves away from the source with velocity 'v0'. Assume that the medium through which the sound waves travel is at rest. If v is the velocity of sound and n is the frequency emitted by the source, then the difference between apparent frequencies heard by the observer is ______.