मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : If ∑p_0q0=120,∑p0q1=160,∑p1q1=140,and∑p1q+0 = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.

बेरीज

उत्तर

Given,
`sum"p"_0"q"_0 = 120, sum"p"_0"q"_1 = 160`,
`sum"p"_1"q"_1 = 140, sum"p"_1"q"_0 = 200`

Laspeyre’s Price Index Number:

P01(L) = `(sum"P"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = (200)/(120) xx 100` = 166.67

Paasche’s Price Index Number:

P01(P) = `(sum"P"_1"q"_1)/(sum"p"_0"q"_1) xx 100 = (140)/(160) xx 100` = 87.5

Dorbish-Bowley’s Price Index Number:

P01(D–B) = `("P"_01("L") + "P"_01("P"))/(2)`

= `(166.67 + 87.5)/(2)`

= `(254.17)/(2)`
= 127.085

Marshall-Edgeworth’s Price Index Number:

P01(M–E) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`

= `(200 + 140)/(120 + 160) xx 100`

= `(340)/(280) xx 100`
= 121.43

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Index Numbers - Miscellaneous Exercise 5 [पृष्ठ ९३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 5 Index Numbers
Miscellaneous Exercise 5 | Q 4.15 | पृष्ठ ९३

संबंधित प्रश्‍न

Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.


Choose the correct alternative :

The price Index Number by Weighted Aggregate Method is given by ______.


Paasche’s Price Index Number is given by ______


Dorbish-Bowley’s Price Index Number is given by ______.


Choose the correct alternative :

Fisher’s Price Number is given by


Laspeyre’s Price Index Number is given by _______.


Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

Solve the following problem :

Calculate Walsh’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Choose the correct alternative:

The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for


Choose the correct alternative:

Dorbish–Bowley’s Price Index Number is


Choose the correct alternative:

Fisher’s Price Index Number is


State whether the following statement is True or False:

Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


Calculate Walsh’s price Index Number for the following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 40 3
II 20 2 25 8
III 30 3 50 27
IV 60 9 90 36

Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)


Given the following table, find Walsh’s Price Index Number by completing the activity.

Commodity p0 q0 p1 q1 q0q1 `sqrt("q"_0"q"_1)` p0`sqrt("q"_0"q"_1)` p1`sqrt("q"_0"q"_1)`
I 20 9 30 4 36 `square` `square` 180
II 10 5 50 5 `square` 5 50 `square`
III 40 8 10 2 16 `square` 160 `square`
IV 30 4 20 1 `square` 2 `square` 40
Total     390 `square`

Walsh’s price Index Number is

P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`

= `510/square xx 100`

= `square`


State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×