Advertisements
Advertisements
प्रश्न
Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)
उत्तर
Given, P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320
P01(M-E) = `(sum"p"_1"q"_0 + sum"p"_1"q"_1)/(sum"p"_0"q"_0 + sum"p"_0"q"_1) xx 100`
∴ 120 = `(sum"p"_1"q"_0 + 300)/(120 + 130) xx 100`
∴ 120 = `(sum"p"_1"q"_0 + 300)/440 xx 100`
∴ `sum"p"_1"q"_0 + 300 = (120 xx 440)/100`
∴ `sum"p"_1"q"_0 + 300` = 528
∴ `sum"p"_1"q"_0` = 528 – 300
∴ `sum"p"_1"q"_0` = 228
Laspeyre’s Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`
= `228/120 xx 100`
= 190
संबंधित प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 9 | 20 | 8 |
II | 20 | 5 | 30 | 4 |
III | 30 | 7 | 50 | 5 |
IV | 40 | 8 | 60 | 6 |
If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).
Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.
Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Dorbish-Bowley’s Price Index Number is given by ______.
Fill in the blank :
Dorbish-Bowley’s Price Index Number is given by _______.
Fill in the blank :
Marshall-Edgeworth’s Price Index Number is given by _______.
State whether the following is True or False :
`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.
`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.
`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
Solve the following problem :
Calculate Walsh’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solve the following problem :
Find x if Paasche’s Price Index Number is 140 for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 20 | 8 | 40 | 7 |
B | 50 | 10 | 60 | 10 |
C | 40 | 15 | 60 | x |
D | 12 | 15 | 15 | 15 |
Choose the correct alternative:
Walsh's Price Index Number is given by
Choose the correct alternative:
Fisher’s Price Index Number is
Marshall-Edgeworth's Price Index Number is given by ______
The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number
State whether the following statement is True or False:
`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.
Calculate Marshall-Edgeworth Price Index Number for following.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).
State whether the following statement is true or false:
Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
Laspeyre’s Price Index Number uses current year’s quantities as weights.
If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Solution: P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/square xx 100 = square/14 xx 100`
∴ x = `square`
Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solution:
Commodity | Base Year | Current Year | p1q0 | p0q0 | p1q1 | p0q1 | ||
p0 | q0 | p1 | q1 | |||||
I | 8 | 30 | 12 | 25 | 360 | 240 | 300 | 200 |
II | 10 | 42 | 20 | 16 | 840 | 420 | 320 | 160 |
Total | `bb(sump_1q_0=1200)` | `bb(sump_0q_0=660)` | `bb(sump_1q_1=620)` | `bb(sump_0q_1=360)` |
Laspeyre's Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`
∴ P01(L) = `square`
Paasche 's Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`
∴ P01(P) = `square`