Advertisements
Advertisements
प्रश्न
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
उत्तर
Commodity | Base Year | Current Year | p0q0 | p1q0 | p0q1 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 20 | 18 | 30 | 15 | 360 | 540 | 300 | 450 |
B | 25 | 8 | 28 | 5 | 200 | 224 | 125 | 140 |
C | 32 | 5 | 40 | 7 | 160 | 200 | 224 | 280 |
D | 12 | 10 | 18 | 10 | 120 | 180 | 120 | 180 |
Total | – | – | – | – | 840 | 1144 | 769 | 1050 |
From the table,
`sum"p"_0"q"_0 = 840, sum"p"_1"q"_0 = 1144`,
`sum"p"_0"q"_1 = 769, sum"p"_1"q"_1 = 1050`
Laspeyre's Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`
= `(1144)/(840) xx 100`
= 136.19
Paasche's Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`
= `(1050)/(769) xx 100`
= 136.54
APPEARS IN
संबंधित प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.
Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Fill in the blank :
Dorbish-Bowley’s Price Index Number is given by _______.
Fill in the blank :
Marshall-Edgeworth’s Price Index Number is given by _______.
Walsh’s Price Index Number is given by _______.
`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.
`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price P0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 3 | x | 2 | 5 |
B | 4 | 6 | 3 | 5 |
Choose the correct alternative:
Dorbish–Bowley’s Price Index Number is
Choose the correct alternative:
Walsh's Price Index Number is given by
Choose the correct alternative:
Fisher’s Price Index Number is
State whether the following statement is True or False:
`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number
State whether the following statement is True or False:
`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.
If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)