Advertisements
Advertisements
प्रश्न
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price P0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
उत्तर
Commodity | Base Year | Current Year | p0q0 | p0q1 | p1q0 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
I | 8 | 30 | 12 | 25 | 240 | 200 | 360 | 300 |
II | 10 | 42 | 20 | 16 | 420 | 160 | 840 | 320 |
Total | – | – | – | – | 660 | 360 | 1200 | 620 |
From the table,
`sum"p"_0"q"_0 = 660, sum"p"_0"q"_1 = 360`,
`sum"p"_1"q"_0 = 1200, sum"p"_1"q"_1 = 620`
Laspeyre’s Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`
= `(1200)/(660) xx 100`
= 181.82
Paasche’s Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`
= `(620)/(360) xx 100`
= 172.22
APPEARS IN
संबंधित प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 9 | 20 | 8 |
II | 20 | 5 | 30 | 4 |
III | 30 | 7 | 50 | 5 |
IV | 40 | 8 | 60 | 6 |
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 20 | 9 |
II | 20 | 4 | 25 | 8 |
III | 30 | 13 | 40 | 27 |
IV | 60 | 29 | 75 | 36 |
Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Paasche’s Price Index Number is given by ______
Fill in the blank :
Dorbish-Bowley’s Price Index Number is given by _______.
State whether the following is True or False :
`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.
State whether the following is True or False :
`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
State whether the following is True or False :
`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
Solve the following problem :
Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Solve the following problem :
Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.
Fisher's Price Index Number is given by ______.
If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).
If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers
Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)
State whether the following statement is true or false:
Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.