हिंदी

Solve the following problem : Calculate Laspeyre’s and Paasche’s Price Index Number for the following data. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16
योग

उत्तर

Commodity Base Year Current Year p0q0 p0q1 p1q0 p1q1
  p0 q0 p1 q1        
I 8 30 12 25 240 200 360 300
II 10 42 20 16 420 160 840 320
Total 660 360 1200 620

From the table,
`sum"p"_0"q"_0 = 660, sum"p"_0"q"_1 = 360`,

`sum"p"_1"q"_0 = 1200, sum"p"_1"q"_1 = 620`

Laspeyre’s Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`

= `(1200)/(660) xx 100`

= 181.82

Paasche’s Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`

= `(620)/(360) xx 100` 

= 172.22

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Miscellaneous Exercise 5 [पृष्ठ ९३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Miscellaneous Exercise 5 | Q 4.09 | पृष्ठ ९३

संबंधित प्रश्न

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Dorbish-Bowley’s Price Index Number is given by ______.


Choose the correct alternative :

Walsh’s Price Index Number is given by


State whether the following is True or False :

`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.


Solve the following problem :

Calculate Walsh’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8

Solve the following problem :

Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.


If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.


Choose the correct alternative:

Dorbish–Bowley’s Price Index Number is


The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number


Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 10 9 50 8
B 20 5 60 4
C 30 7 70 3
D 40 8 80 2

Calculate Walsh’s price Index Number for the following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 40 3
II 20 2 25 8
III 30 3 50 27
IV 60 9 90 36

If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)


Given the following table, find Walsh’s Price Index Number by completing the activity.

Commodity p0 q0 p1 q1 q0q1 `sqrt("q"_0"q"_1)` p0`sqrt("q"_0"q"_1)` p1`sqrt("q"_0"q"_1)`
I 20 9 30 4 36 `square` `square` 180
II 10 5 50 5 `square` 5 50 `square`
III 40 8 10 2 16 `square` 160 `square`
IV 30 4 20 1 `square` 2 `square` 40
Total     390 `square`

Walsh’s price Index Number is

P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`

= `510/square xx 100`

= `square`


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×