हिंदी

If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.

योग

उत्तर

Given, P01(L) = 150.2, P01(D-B) = 152.8
Dorbish-Bowley’s Price Index Number:

P01(D-B) = `("P"_01("L") + "P"_01("P"))/(2)`

∴ 152.8 = `(150.2 + "P"_01("P"))/(2)`

∴ 305.6 = 150.2 6 + P01(P)
∴ P01(P) = 305.6 – 150.2 = 155.4

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Miscellaneous Exercise 5 [पृष्ठ ९३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Miscellaneous Exercise 5 | Q 4.14 | पृष्ठ ९३

संबंधित प्रश्न

If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


Laspeyre’s Price Index Number is given by ______.


Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


Walsh’s Price Index Number is given by _______.


State whether the following is True or False :

`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.


`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
price
p1
Quantity
q1
A 20 18 30 15
B 25 8 28 5
C 32 5 40 7
D 12 10 18 10

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Choose the correct alternative:

The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for


Marshall-Edgeworth's Price Index Number is given by ______


State whether the following statement is True or False:

Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`


State whether the following statement is True or False:

`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number


If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


Given the following table, find Walsh’s Price Index Number by completing the activity.

Commodity p0 q0 p1 q1 q0q1 `sqrt("q"_0"q"_1)` p0`sqrt("q"_0"q"_1)` p1`sqrt("q"_0"q"_1)`
I 20 9 30 4 36 `square` `square` 180
II 10 5 50 5 `square` 5 50 `square`
III 40 8 10 2 16 `square` 160 `square`
IV 30 4 20 1 `square` 2 `square` 40
Total     390 `square`

Walsh’s price Index Number is

P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`

= `510/square xx 100`

= `square`


State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


`sqrt((sump_1q_0)/(sump_0q_0)) xx sqrt((sump_1q_1)/(sump_0q_1)) xx 100`


Laspeyre’s Price Index Number uses current year’s quantities as weights.


In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×