हिंदी

Marshall-Edgeworth's Price Index Number is given by - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Marshall-Edgeworth's Price Index Number is given by ______

रिक्त स्थान भरें

उत्तर

Marshall-Edgeworth's Price Index Number is given by `bb(underline((sump_1q_0 +sump_1q_1)/(sump_0q_0 + sump_0q_1) xx 100))`.

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.5: Index Numbers - Q.2

संबंधित प्रश्न

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 9 20 8
II 20 5 30 4
III 30 7 50 5
IV 40 8 60 6

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
L 4 16 3 19
M 6 16 8 14
N 8 28 7 32

Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.


If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Choose the correct alternative :

The price Index Number by Weighted Aggregate Method is given by ______.


Choose the correct alternative :

Walsh’s Price Index Number is given by


Fill in the blank :

Dorbish-Bowley’s Price Index Number is given by _______.


Walsh’s Price Index Number is given by _______.


`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.


State whether the following is True or False :

`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.


`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.


Solve the following problem :

Calculate Marshall-Edgeworth’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
X 12 35 15 25
Y 29 50 30 70

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Choose the correct alternative:

The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for


Fisher's Price Index Number is given by ______.


State whether the following statement is True or False:

Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`


State whether the following statement is True or False:

`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number


State whether the following statement is True or False:

`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.


If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).


Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 1 10 2 5
B 1 12

Given the following table, find Walsh’s Price Index Number by completing the activity.

Commodity p0 q0 p1 q1 q0q1 `sqrt("q"_0"q"_1)` p0`sqrt("q"_0"q"_1)` p1`sqrt("q"_0"q"_1)`
I 20 9 30 4 36 `square` `square` 180
II 10 5 50 5 `square` 5 50 `square`
III 40 8 10 2 16 `square` 160 `square`
IV 30 4 20 1 `square` 2 `square` 40
Total     390 `square`

Walsh’s price Index Number is

P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`

= `510/square xx 100`

= `square`


State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


`sqrt((sump_1q_0)/(sump_0q_0)) xx sqrt((sump_1q_1)/(sump_0q_1)) xx 100`


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Calculate Marshall – Edgeworth’s price index number for the following data:

Commodity Base year Current year
Price Quantity Price Quantity
P 12 20 18 24
Q 14 12 21 16
R 8 10 12 18
S 16 15 20 25

If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×