हिंदी

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 9 20 8
II 20 5 30 4
III 30 7 50 5
IV 40 8 60 6
योग

उत्तर

Commodity Base Year Current Year p0q0 p1q0 p0q1 p1q1
p0 q0 p1 q1
I 10 9 20 8 90 180 80 160
II 20 5 30 4 100 150 80 120
III 30 7 50 5 210 350 150 250
IV 40 8 60 6 320 480 240 360
Total - - - - 720 1160 550 890

From the table,

`sum "p"_0"q"_0 = 720, sum "p"_1"q"_0 = 1160`

`sum "p"_0"q"_1 = 550, sum "p"_1"q"_1 = 890`

(i) Laspeyre’s Price Index Number:

`"P"_01 ("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`

`= 1160/720 xx 100`

= 161.11

(ii) Paasche’s Price Index Number:

`"P"_01 ("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`

`= 890/550 xx 100`

= 161.82

(iii) Dorbish-Bowley’s Price Index Number:

`"P"_01 ("D - B") = ("P"_01 ("L") + "P"_01 ("P"))/2`

`= (161.11  +  161.82)/2`

= 161.46

(iv) Marshall-Edgeworth’s Price Index Number:

`"P"_01 ("M- E") = (sum "p"_1"q"_0  +  sum "p"_1"q"_1)/(sum "p"_0"q"_0  +  sum "p"_0"q"_1) xx 100`

`= (1160 + 890)/(720 + 550) xx 100`

= 161.42

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Exercise 5.2 [पृष्ठ ८२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Exercise 5.2 | Q 1.02 | पृष्ठ ८२

संबंधित प्रश्न

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 20 9
II 20 4 25 8
III 30 13 40 27
IV 60 29 75 36

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.


Laspeyre’s Price Index Number is given by _______.


Fill in the blank :

Dorbish-Bowley’s Price Index Number is given by _______.


Fill in the blank :

Marshall-Edgeworth’s Price Index Number is given by _______.


State whether the following is True or False :

`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.


Solve the following problem :

Calculate Marshall-Edgeworth’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
X 12 35 15 25
Y 29 50 30 70

Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Choose the correct alternative:

Dorbish–Bowley’s Price Index Number is


The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number


State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


`sqrt((sump_1q_0)/(sump_0q_0)) xx sqrt((sump_1q_1)/(sump_0q_1)) xx 100`


Laspeyre’s Price Index Number uses current year’s quantities as weights.


If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×