हिंदी

Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2
योग

उत्तर

Commodity Base Year Current year p0q0 p1q0 p0q1 p1q1
p0 q0 p1 q1
A 2 10 2 5 20 20 10 10
B 2 5 x 2 10 5x 4 2x
Total - - - - 30 20+5x 14 10+2x

From the table,

∑ p0q0 = 30, ∑ p1q0 = 20 + 5x

∑ p0q1 = 14, ∑ p1q1 = 10 + 2x

`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`

∴ `"P"_01("L") = (20 + 5 x)/30 xx 100`   ...(i)

`"P"_01("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`

∴ `"P"_01("P") = (10 + 2x)/14 xx 100`     ....(ii)

Since P01(L) = P01(P),

`(20 + 5x)/30 xx 100 = (10 + 2x)/14 xx 100`     ....[From (i) and (ii)]

∴ 14(20 + 5x) = 30(10 + 2x)

∴ 280 + 70x = 300 + 60x

∴ 70x - 60x = 300 - 280

∴ 10x = 20

∴ x = `20/10 = 2`

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Exercise 5.2 [पृष्ठ ८२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Exercise 5.2 | Q 1.09 | पृष्ठ ८२

संबंधित प्रश्न

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
L 4 16 3 19
M 6 16 8 14
N 8 28 7 32

Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.


Laspeyre’s Price Index Number is given by _______.


`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.


State whether the following is True or False :

`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.


State whether the following is True or False :

`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8

Solve the following problem :

Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.


Solve the following problem :

Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.


Choose the correct alternative:

Dorbish–Bowley’s Price Index Number is


Marshall-Edgeworth's Price Index Number is given by ______


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).


If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


Calculate Marshall – Edgeworth’s price index number for the following data:

Commodity Base year Current year
Price Quantity Price Quantity
P 12 20 18 24
Q 14 12 21 16
R 8 10 12 18
S 16 15 20 25

If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×