हिंदी

Solve the following problem : Given that ∑p1q1=300,∑p0q1=320,∑p0q0 = 120, and Marshall- Edgeworth’s Price Index Number is 120, find ∑p1q0 and Paasche’s Price Index Number. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.

योग

उत्तर

Given, P01(M-E) = `120, sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0 = 120`

P01(M–E) = `(sum"p"_1"q"_0 + sum"p"_1"q"_1)/(sum"p"_0"q"_0 + sum"p"_0"q"_1) xx 100`

∴ 120 = `(sum"p"_1"q"_0 + 300)/(120 + 320) xx 100`

∴ 120 = `(sum"p"_1"q"_0 + 300)/(440) xx 100`

∴ `sum"p"_1"q"_0 + 300 = (120 xx 440)/(100)`

∴ `sum"p"_1"q"_0 + 300` = 528
∴ `sum"p"_1"q"_0` = 528 – 300
∴ `sum"p"_1"q"_0` = 228

Paasche’s Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`

= `(300)/(320) xx 100`
= 93.75

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Miscellaneous Exercise 5 [पृष्ठ ९३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Miscellaneous Exercise 5 | Q 4.17 | पृष्ठ ९३

संबंधित प्रश्न

If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Laspeyre’s Price Index Number is given by ______.


Choose the correct alternative :

Fisher’s Price Number is given by


Fill in the blank :

Dorbish-Bowley’s Price Index Number is given by _______.


`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.


State whether the following is True or False :

`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Walsh’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Solve the following problem :

Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.


Solve the following problem :

If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.


Marshall-Edgeworth's Price Index Number is given by ______


State whether the following statement is True or False:

`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


Calculate Marshall-Edgeworth Price Index Number for following.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35

If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)


If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.


In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×