Advertisements
Advertisements
प्रश्न
Solve the following problem :
Find x if Paasche’s Price Index Number is 140 for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 20 | 8 | 40 | 7 |
B | 50 | 10 | 60 | 10 |
C | 40 | 15 | 60 | x |
D | 12 | 15 | 15 | 15 |
उत्तर
Commodity | Base Year | Current Year | p0q1 | p1q1 | ||
p0 | q0 | p1 | q1 | |||
A | 20 | 8 | 40 | 7 | 140 | 280 |
B | 50 | 10 | 60 | 10 | 500 | 600 |
C | 40 | 15 | 60 | x | 40x | 60x |
D | 12 | 15 | 15 | 15 | 180 | 225 |
Total | – | – | – | – | 40x + 820 | 60x + 1105 |
From the table,
`sum"p"_0"q"_1 = 40x + 820, sum"p"_1"q"_1 = 60x + 1,105`
Paasche’s Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`
∴ 140 = `(60x + 1105)/(40x + 820) xx 100` ...[P01(P) = 140]
∴ `(140)/(100) = (60x + 1,105)/(40x + 820)`
∴ `(7)/(5) = (60x + 1,105)/(40x + 820)`
∴ 280x + 5,740 = 300x + 5,525
∴ 300x – 280x = 5,740 – 5,525
∴ 20x = 215
∴ x = 10.75
APPEARS IN
संबंधित प्रश्न
Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.
Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
Walsh’s Price Index Number is given by _______.
`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.
State whether the following is True or False :
`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.
`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.
State whether the following is True or False :
`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.
Solve the following problem:
If find x is Walsh’s Price Index Number is 150 for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 5 | 3 | 10 | 3 |
B | x | 4 | 16 | 9 |
C | 15 | 5 | 23 | 5 |
D | 10 | 2 | 26 | 8 |
Solve the following problem :
Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.
If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Solve the following problem :
Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.
The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number
State whether the following statement is True or False:
Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
State whether the following statement is True or False:
`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number
Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 10 | 9 | 50 | 8 |
B | 20 | 5 | 60 | 4 |
C | 30 | 7 | 70 | 3 |
D | 40 | 8 | 80 | 2 |
If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).
If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)
Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solution:
Commodity | Base Year | Current Year | p1q0 | p0q0 | p1q1 | p0q1 | ||
p0 | q0 | p1 | q1 | |||||
I | 8 | 30 | 12 | 25 | 360 | 240 | 300 | 200 |
II | 10 | 42 | 20 | 16 | 840 | 420 | 320 | 160 |
Total | `bb(sump_1q_0=1200)` | `bb(sump_0q_0=660)` | `bb(sump_1q_1=620)` | `bb(sump_0q_1=360)` |
Laspeyre's Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`
∴ P01(L) = `square`
Paasche 's Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`
∴ P01(P) = `square`