हिंदी

Choose the correct alternative : Marshall-Edgeworth’s Price Index Number is given by - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by

विकल्प

  • `(sum"p"_1("q"_0 + "q"_1))/(sum"p"_0("q"_0 + "q"_1)) xx 100`

  • `(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100`

  • `(sum"q"_1("p"_0 + "p"_1))/(sum"q"_1("p"_0 + "p"_1)) xx 100`

  • `(sum"q"_0("p"_0 + "p"_1))/(sum"q"_1("p"_0 + "p"_1)) xx 100`

MCQ

उत्तर

Marshall-Edgeworth’s Price Index Number is given by `(sum"p"_1("q"_0 + "q"_1))/(sum"p"_0("q"_0 + "q"_1)) xx 100`.

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Miscellaneous Exercise 5 [पृष्ठ ९०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Miscellaneous Exercise 5 | Q 1.11 | पृष्ठ ९०

संबंधित प्रश्न

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
L 4 16 3 19
M 6 16 8 14
N 8 28 7 32

Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.


Walsh’s Price Index Number is given by _______.


`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.


State whether the following is True or False :

`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem :

Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.


Solve the following problem :

Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


Choose the correct alternative:

Dorbish–Bowley’s Price Index Number is


Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 10 9 50 8
B 20 5 60 4
C 30 7 70 3
D 40 8 80 2

Calculate Walsh’s price Index Number for the following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 40 3
II 20 2 25 8
III 30 3 50 27
IV 60 9 90 36

If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)


State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×