हिंदी

Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.

योग

उत्तर

Given, ∑ p0q0 = 220, ∑ p0q1 = 380,

∑ p1q1 = 350 and P01 (M - E) = 150

`"P"_01("M - E") = (sum "p"_1"q"_0 + sum "p"_1"q"_1)/(sum "p"_0"q"_0 + sum "p"_0"q"_1) xx 100`

∴ `150 = (sum "p"_1"q"_0 + 350)/(220 + 380) xx 100`

∴ `150 = (sum "p"_1"q"_0 + 350)/600 xx 100`

∴ `(150 xx 600)/100 = sum "p"_1"q"_0 + 350`

∴ 900 = ∑ p1q0 + 350 

∴ ∑ p1q0 = 900 - 350 = 550

`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`

`= 550/220 xx 100 = 250` 

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Exercise 5.2 [पृष्ठ ८२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Exercise 5.2 | Q 1.08 | पृष्ठ ८२

संबंधित प्रश्न

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 20 9
II 20 4 25 8
III 30 13 40 27
IV 60 29 75 36

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


Laspeyre’s Price Index Number is given by _______.


Fill in the blank :

Paasche’s Price Index Number is given by _______.


Solve the following problem :

Calculate Marshall-Edgeworth’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
X 12 35 15 25
Y 29 50 30 70

Solve the following problem :

Calculate Walsh’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Choose the correct alternative:

Walsh's Price Index Number is given by


Marshall-Edgeworth's Price Index Number is given by ______


State whether the following statement is True or False:

`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number


State whether the following statement is True or False:

`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.


Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 10 9 50 8
B 20 5 60 4
C 30 7 70 3
D 40 8 80 2

Calculate Walsh’s price Index Number for the following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 40 3
II 20 2 25 8
III 30 3 50 27
IV 60 9 90 36

State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×