Advertisements
Advertisements
प्रश्न
Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.
उत्तर
Given, ∑ p0q0 = 220, ∑ p0q1 = 380,
∑ p1q1 = 350 and P01 (M - E) = 150
`"P"_01("M - E") = (sum "p"_1"q"_0 + sum "p"_1"q"_1)/(sum "p"_0"q"_0 + sum "p"_0"q"_1) xx 100`
∴ `150 = (sum "p"_1"q"_0 + 350)/(220 + 380) xx 100`
∴ `150 = (sum "p"_1"q"_0 + 350)/600 xx 100`
∴ `(150 xx 600)/100 = sum "p"_1"q"_0 + 350`
∴ 900 = ∑ p1q0 + 350
∴ ∑ p1q0 = 900 - 350 = 550
`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`
`= 550/220 xx 100 = 250`
APPEARS IN
संबंधित प्रश्न
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 20 | 9 |
II | 20 | 4 | 25 | 8 |
III | 30 | 13 | 40 | 27 |
IV | 60 | 29 | 75 | 36 |
If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).
If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
Laspeyre’s Price Index Number is given by _______.
Fill in the blank :
Paasche’s Price Index Number is given by _______.
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
Solve the following problem :
Calculate Walsh’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price P0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Choose the correct alternative:
Walsh's Price Index Number is given by
Marshall-Edgeworth's Price Index Number is given by ______
State whether the following statement is True or False:
`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number
State whether the following statement is True or False:
`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.
Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 10 | 9 | 50 | 8 |
B | 20 | 5 | 60 | 4 |
C | 30 | 7 | 70 | 3 |
D | 40 | 8 | 80 | 2 |
Calculate Walsh’s price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 40 | 3 |
II | 20 | 2 | 25 | 8 |
III | 30 | 3 | 50 | 27 |
IV | 60 | 9 | 90 | 36 |
State whether the following statement is true or false:
Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
Laspeyre’s Price Index Number uses current year’s quantities as weights.