हिंदी

If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.

योग

उत्तर

Given, ∑ p0q0 = 140, ∑ p0q1 = 200,
∑ p1q0 = 350, ∑ p1q1 = 460

  • Laspeyre’s Price Index Number:

`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`

`= 350/140 xx 100 = 250`

  • Paasche’s Price Index Number:

`"P"_01("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`

`= 460/200 xx 100 = 230`

  • Dorbish-Bowley’s Price Index Number:

`"P"_01("D - B") = ("P"_01("L") + "P"_01("P"))/2`

`= (250 + 230)/2 = 480/2 = 240`

  • Marshall-Edgeworth’s Price Index Number:

`"P"_01("M - E") = (sum "p"_1"q"_0 + sum "p"_1"q"_1)/(sum "p"_0"q"_0 + sum "p"_0"q"_1) xx 100`

`= (350 + 460)/(140 + 200) xx 100`

`= 810/340 xx 100 = 238.24`

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Index Numbers - Exercise 5.2 [पृष्ठ ८२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Index Numbers
Exercise 5.2 | Q 1.06 | पृष्ठ ८२

संबंधित प्रश्न

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.


Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


Fill in the blank :

Dorbish-Bowley’s Price Index Number is given by _______.


Fill in the blank :

Marshall-Edgeworth’s Price Index Number is given by _______.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
price
p1
Quantity
q1
A 20 18 30 15
B 25 8 28 5
C 32 5 40 7
D 12 10 18 10

Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8

Solve the following problem :

Find x if Paasche’s Price Index Number is 140 for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 20 8 40 7
B 50 10 60 10
C 40 15 60 x
D 12 15 15 15

Solve the following problem :

Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


Choose the correct alternative:

Walsh's Price Index Number is given by


Choose the correct alternative:

Fisher’s Price Index Number is


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 10 9 50 8
B 20 5 60 4
C 30 7 70 3
D 40 8 80 2

Laspeyre’s Price Index Number uses current year’s quantities as weights.


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×