Advertisements
Advertisements
प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
उत्तर
Commodity | Base Year | Current Year | p0q0 | p1q0 | p0q1 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 8 | 20 | 11 | 15 | 160 | 220 | 120 | 165 |
B | 7 | 10 | 12 | 10 | 70 | 120 | 70 | 120 |
C | 3 | 30 | 5 | 25 | 90 | 150 | 75 | 125 |
D | 2 | 50 | 4 | 35 | 100 | 200 | 70 | 140 |
Total | - | - | - | - | 420 | 690 | 335 | 550 |
From the table,
`sum "p"_0"q"_0 = 420, sum "p"_1"q"_0 = 690`
`sum "p"_0"q"_1 = 335, sum "p"_1"q"_1 = 550`
(i) Laspeyre’s Price Index Number:
`"P"_01 ("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = 690/420 xx 100 = 164.29`
(ii) Paasche’s Price Index Number:
`"P"_01 ("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100 = 550/335 xx 100 = 164.18`
(iii) Dorbish-Bowley’s Price Index Number:
`"P"_01 ("D - B") = ("P"_01 ("L") + "P"_01 ("P"))/2`
`= (164.29 + 164.18)/2`
= 164.24
(iv) Marshall-Edgeworth’s Price Index Number:
`"P"_01 ("M- E") = (sum "p"_1"q"_0 + sum "p"_1"q"_1)/(sum "p"_0"q"_0 + sum "p"_0"q"_1) xx 100`
`= (690 + 550)/(420 + 335) xx 100`
`= 1240/755 xx 100`
= 164.24
APPEARS IN
संबंधित प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 9 | 20 | 8 |
II | 20 | 5 | 30 | 4 |
III | 30 | 7 | 50 | 5 |
IV | 40 | 8 | 60 | 6 |
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 20 | 9 |
II | 20 | 4 | 25 | 8 |
III | 30 | 13 | 40 | 27 |
IV | 60 | 29 | 75 | 36 |
If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.
Fill in the blank :
Paasche’s Price Index Number is given by _______.
Walsh’s Price Index Number is given by _______.
`(sump_1q_0)/(sump_0q_0) xx 100` is Paasche’s Price Index Number.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
Solve the following problem:
If find x is Walsh’s Price Index Number is 150 for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 5 | 3 | 10 | 3 |
B | x | 4 | 16 | 9 |
C | 15 | 5 | 23 | 5 |
D | 10 | 2 | 26 | 8 |
Solve the following problem :
Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.
If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Choose the correct alternative:
The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for
Choose the correct alternative:
Fisher’s Price Index Number is
Marshall-Edgeworth's Price Index Number is given by ______
State whether the following statement is True or False:
Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
State whether the following statement is True or False:
`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.
If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
Calculate Marshall – Edgeworth’s price index number for the following data:
Commodity | Base year | Current year | ||
Price | Quantity | Price | Quantity | |
P | 12 | 20 | 18 | 24 |
Q | 14 | 12 | 21 | 16 |
R | 8 | 10 | 12 | 18 |
S | 16 | 15 | 20 | 25 |