Advertisements
Advertisements
Question
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Solution
Commodity | Base Year | Current Year | p0q0 | p1q0 | p0q1 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 8 | 20 | 11 | 15 | 160 | 220 | 120 | 165 |
B | 7 | 10 | 12 | 10 | 70 | 120 | 70 | 120 |
C | 3 | 30 | 5 | 25 | 90 | 150 | 75 | 125 |
D | 2 | 50 | 4 | 35 | 100 | 200 | 70 | 140 |
Total | - | - | - | - | 420 | 690 | 335 | 550 |
From the table,
`sum "p"_0"q"_0 = 420, sum "p"_1"q"_0 = 690`
`sum "p"_0"q"_1 = 335, sum "p"_1"q"_1 = 550`
(i) Laspeyre’s Price Index Number:
`"P"_01 ("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = 690/420 xx 100 = 164.29`
(ii) Paasche’s Price Index Number:
`"P"_01 ("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100 = 550/335 xx 100 = 164.18`
(iii) Dorbish-Bowley’s Price Index Number:
`"P"_01 ("D - B") = ("P"_01 ("L") + "P"_01 ("P"))/2`
`= (164.29 + 164.18)/2`
= 164.24
(iv) Marshall-Edgeworth’s Price Index Number:
`"P"_01 ("M- E") = (sum "p"_1"q"_0 + sum "p"_1"q"_1)/(sum "p"_0"q"_0 + sum "p"_0"q"_1) xx 100`
`= (690 + 550)/(420 + 335) xx 100`
`= 1240/755 xx 100`
= 164.24
APPEARS IN
RELATED QUESTIONS
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 20 | 9 |
II | 20 | 4 | 25 | 8 |
III | 30 | 13 | 40 | 27 |
IV | 60 | 29 | 75 | 36 |
Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.
Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.
Choose the correct alternative :
Fisher’s Price Number is given by
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
Laspeyre’s Price Index Number is given by _______.
Fill in the blank :
Marshall-Edgeworth’s Price Index Number is given by _______.
Walsh’s Price Index Number is given by _______.
State whether the following is True or False :
`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Solve the following problem :
Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.
Choose the correct alternative:
Price Index Number by using Weighted Aggregate Method is given by
Marshall-Edgeworth's Price Index Number is given by ______
State whether the following statement is True or False:
`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number
If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers
Laspeyre’s Price Index Number uses current year’s quantities as weights.
If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Solution: P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/square xx 100 = square/14 xx 100`
∴ x = `square`
Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solution:
Commodity | Base Year | Current Year | p1q0 | p0q0 | p1q1 | p0q1 | ||
p0 | q0 | p1 | q1 | |||||
I | 8 | 30 | 12 | 25 | 360 | 240 | 300 | 200 |
II | 10 | 42 | 20 | 16 | 840 | 420 | 320 | 160 |
Total | `bb(sump_1q_0=1200)` | `bb(sump_0q_0=660)` | `bb(sump_1q_1=620)` | `bb(sump_0q_1=360)` |
Laspeyre's Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`
∴ P01(L) = `square`
Paasche 's Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`
∴ P01(P) = `square`