English

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers. - Mathematics and Statistics

Advertisements
Advertisements

Question

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 8 20 11 15
B 7 10 12 10
C 3 30 5 25
D 2 50 4 35
Sum

Solution

Commodity Base Year Current Year p0q0 p1q0 p0q1 p1q1
p0 q0 p1 q1
A 8 20 11 15 160 220 120 165
B 7 10 12 10 70 120 70 120
C 3 30 5 25 90 150 75 125
D 2 50 4 35 100 200 70 140
Total - - - - 420 690 335 550

From the table,

`sum "p"_0"q"_0 = 420, sum "p"_1"q"_0 = 690`

`sum "p"_0"q"_1 = 335, sum "p"_1"q"_1 = 550`

(i) Laspeyre’s Price Index Number:

`"P"_01 ("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = 690/420 xx 100 = 164.29`

(ii) Paasche’s Price Index Number:

`"P"_01 ("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100 = 550/335 xx 100 = 164.18`

(iii) Dorbish-Bowley’s Price Index Number:

`"P"_01 ("D - B") = ("P"_01 ("L") + "P"_01 ("P"))/2`

`= (164.29  +  164.18)/2`

= 164.24

(iv) Marshall-Edgeworth’s Price Index Number:

`"P"_01 ("M- E") = (sum "p"_1"q"_0  +  sum "p"_1"q"_1)/(sum "p"_0"q"_0  +  sum "p"_0"q"_1) xx 100`

`= (690 + 550)/(420 + 335) xx 100`

`= 1240/755 xx 100`

= 164.24

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 5: Index Numbers - Exercise 5.2 [Page 82]

RELATED QUESTIONS

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 20 9
II 20 4 25 8
III 30 13 40 27
IV 60 29 75 36

Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.


Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


Choose the correct alternative :

Fisher’s Price Number is given by


Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


Laspeyre’s Price Index Number is given by _______.


Fill in the blank :

Marshall-Edgeworth’s Price Index Number is given by _______.


Walsh’s Price Index Number is given by _______.


State whether the following is True or False :

`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.


Solve the following problem :

Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


Marshall-Edgeworth's Price Index Number is given by ______


State whether the following statement is True or False:

`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number


If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


Laspeyre’s Price Index Number uses current year’s quantities as weights.


If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×