Advertisements
Advertisements
Question
Laspeyre’s Price Index Number uses current year’s quantities as weights.
Options
True
False
Solution
This statement is False.
APPEARS IN
RELATED QUESTIONS
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
L | 4 | 16 | 3 | 19 |
M | 6 | 16 | 8 | 14 |
N | 8 | 28 | 7 | 32 |
If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Paasche’s Price Index Number is given by ______
Choose the correct alternative :
Walsh’s Price Index Number is given by
Fill in the blank :
Paasche’s Price Index Number is given by _______.
Fill in the blank :
Dorbish-Bowley’s Price Index Number is given by _______.
Walsh’s Price Index Number is given by _______.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
Solve the following problem :
Calculate Dorbish-Bowley’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 11 | 28 |
II | 9 | 25 | 12 | 22 |
III | 10 | 15 | 13 | 11 |
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price P0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.
Solve the following problem :
If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Choose the correct alternative:
Walsh's Price Index Number is given by
State whether the following statement is True or False:
Walsh’s Price Index Number is given by `(sum"p"_1sqrt("q"_0"q"_1))/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
State whether the following statement is True or False:
`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number
State whether the following statement is True or False:
`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.
Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 10 | 9 | 50 | 8 |
B | 20 | 5 | 60 | 4 |
C | 30 | 7 | 70 | 3 |
D | 40 | 8 | 80 | 2 |
Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Solution: P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/square xx 100 = square/14 xx 100`
∴ x = `square`