English

Given P01(M-E) = 120, ∑p1q1 = 300, ∑p0q0 = 120, ∑p0q1 = 320, Find P01(L) - Mathematics and Statistics

Advertisements
Advertisements

Question

Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)

Sum

Solution

Given, P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320

P01(M-E) = `(sum"p"_1"q"_0 + sum"p"_1"q"_1)/(sum"p"_0"q"_0 + sum"p"_0"q"_1) xx 100`

∴ 120 = `(sum"p"_1"q"_0 + 300)/(120 + 130) xx 100`

∴ 120 = `(sum"p"_1"q"_0 + 300)/440 xx 100`

∴ `sum"p"_1"q"_0 + 300 = (120 xx 440)/100`

∴ `sum"p"_1"q"_0 + 300` = 528

∴ `sum"p"_1"q"_0` = 528 – 300

∴ `sum"p"_1"q"_0` = 228

Laspeyre’s Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`

= `228/120 xx 100`

= 190

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 2.5: Index Numbers - Q.4

RELATED QUESTIONS

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.


If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Laspeyre’s Price Index Number is given by ______.


Paasche’s Price Index Number is given by ______


Dorbish-Bowley’s Price Index Number is given by ______.


Laspeyre’s Price Index Number is given by _______.


State whether the following is True or False :

`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Dorbish-Bowley’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 11 28
II 9 25 12 22
III 10 15 13 11

Solve the following problem :

Calculate Marshall-Edgeworth’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
X 12 35 15 25
Y 29 50 30 70

Solve the following problem :

Calculate Walsh’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem :

Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.


Solve the following problem :

Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


Choose the correct alternative:

Fisher’s Price Index Number is


Fisher's Price Index Number is given by ______.


Marshall-Edgeworth's Price Index Number is given by ______


The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number


State whether the following statement is True or False:

`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number


If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)


State whether the following statement is true or false:

Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.


Laspeyre’s Price Index Number uses current year’s quantities as weights.


Calculate Marshall – Edgeworth’s price index number for the following data:

Commodity Base year Current year
Price Quantity Price Quantity
P 12 20 18 24
Q 14 12 21 16
R 8 10 12 18
S 16 15 20 25

If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.


In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×