Advertisements
Advertisements
Question
If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.
Solution
Laspeyre’s Price Index Number:
`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`
Paasche’s Price Index Number:
`"P"_01("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
It is given that
P01(L) = 4 × P01(P)
∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)`
If we denote `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = "A", (sum "p"_1"q"_1)/(sum "p"_0"q"_1) = "B"`,
then A = 4B
Dorbish-Bowley’s Price Index Number:
`"P"_01("D - B") = ("P"_01("L") + "P"_01("P"))/2`
`"P"_01("D - B") = ((sum "p"_1"q"_0)/(sum "p"_0"q"_0) + (sum "p"_1"q"_1)/(sum "p"_0"q"_1))/2 xx 100`
`= ("A + B")/2 xx 100`
`= (4"B" + "B")/2 xx 100` ....[∵ A = 4B]
`= "5B"/2 xx 100`
= 250 B
∴ P01(D-B) = 250 B ....(i)
Fisher’s Price Index Number:
`"P"_01 ("F") = sqrt((sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)) xx 100`
`= sqrt("A" xx "B") xx 100`
`= sqrt("4B" xx "B") xx 100`
`= sqrt("4B"^2) xx 100`
= 2B × 100
∴ P01 (F) = 200 B ...(ii)
Dividing (i) by (ii), we get
`("P"_01 ("D - B"))/("P"_01 ("F")) = (250"B")/(200 "B")`
∴ `("P"_01 ("D - B"))/("P"_01 ("F")) = 5/4`
∴ `"P"_01 ("D - B") = 5/4 xx "P"_01 ("F")`
APPEARS IN
RELATED QUESTIONS
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 20 | 9 |
II | 20 | 4 | 25 | 8 |
III | 30 | 13 | 40 | 27 |
IV | 60 | 29 | 75 | 36 |
If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).
Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.
Laspeyre’s Price Index Number is given by ______.
Paasche’s Price Index Number is given by ______
Dorbish-Bowley’s Price Index Number is given by ______.
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
Solve the following problem :
Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.
Solve the following problem :
Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.
Choose the correct alternative:
Dorbish–Bowley’s Price Index Number is
Fisher's Price Index Number is given by ______.
The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number
Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)
Given the following table, find Walsh’s Price Index Number by completing the activity.
Commodity | p0 | q0 | p1 | q1 | q0q1 | `sqrt("q"_0"q"_1)` | p0`sqrt("q"_0"q"_1)` | p1`sqrt("q"_0"q"_1)` |
I | 20 | 9 | 30 | 4 | 36 | `square` | `square` | 180 |
II | 10 | 5 | 50 | 5 | `square` | 5 | 50 | `square` |
III | 40 | 8 | 10 | 2 | 16 | `square` | 160 | `square` |
IV | 30 | 4 | 20 | 1 | `square` | 2 | `square` | 40 |
Total | – | – | – | – | 390 | `square` |
Walsh’s price Index Number is
P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
= `510/square xx 100`
= `square`
In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Solution: P01(L) = P01(P)
`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`
`(20 + 5x)/square xx 100 = square/14 xx 100`
∴ x = `square`