English

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers. - Mathematics and Statistics

Advertisements
Advertisements

Question

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.

Sum

Solution

Laspeyre’s Price Index Number:

`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`

Paasche’s Price Index Number:

`"P"_01("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`

It is given that

P01(L) = 4 × P01(P)

∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`

∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)`

If we denote `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = "A", (sum "p"_1"q"_1)/(sum "p"_0"q"_1) = "B"`,

then A = 4B

Dorbish-Bowley’s Price Index Number:

`"P"_01("D - B") = ("P"_01("L") + "P"_01("P"))/2`

`"P"_01("D - B") = ((sum "p"_1"q"_0)/(sum "p"_0"q"_0) + (sum "p"_1"q"_1)/(sum "p"_0"q"_1))/2 xx 100`

`= ("A + B")/2 xx 100`

`= (4"B" + "B")/2 xx 100`      ....[∵ A = 4B]

`= "5B"/2 xx 100`

= 250 B

∴ P01(D-B) = 250 B    ....(i)

Fisher’s Price Index Number:

`"P"_01 ("F") = sqrt((sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)) xx 100`

`= sqrt("A" xx "B") xx 100`

`= sqrt("4B" xx "B") xx 100`

`= sqrt("4B"^2) xx 100`

= 2B × 100

∴ P01 (F) = 200 B     ...(ii)

Dividing (i) by (ii), we get

`("P"_01 ("D - B"))/("P"_01 ("F")) = (250"B")/(200 "B")`

∴ `("P"_01 ("D - B"))/("P"_01 ("F")) = 5/4`

∴ `"P"_01 ("D - B") = 5/4 xx "P"_01 ("F")`

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  Is there an error in this question or solution?
Chapter 5: Index Numbers - Exercise 5.2 [Page 82]

RELATED QUESTIONS

Calculate Walsh’s Price Index Number.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 12 20 9
II 20 4 25 8
III 30 13 40 27
IV 60 29 75 36

If P01(L) = 90 and P01(P) = 40, find P01(D – B) and P01(F).


Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.


Laspeyre’s Price Index Number is given by ______.


Paasche’s Price Index Number is given by ______


Dorbish-Bowley’s Price Index Number is given by ______.


Choose the correct alternative :

Marshall-Edgeworth’s Price Index Number is given by


State whether the following is True or False :

`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
price
p1
Quantity
q1
A 20 18 30 15
B 25 8 28 5
C 32 5 40 7
D 12 10 18 10

Solve the following problem :

Calculate Marshall-Edgeworth’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
X 12 35 15 25
Y 29 50 30 70

Solve the following problem :

Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.


Solve the following problem :

Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.


Choose the correct alternative:

Dorbish–Bowley’s Price Index Number is


Fisher's Price Index Number is given by ______.


The average of Laspeyre’s and Paasche’s Price Index Numbers is called ______ Price Index Number


Given P01(M-E) = 120, `sum"p"_1"q"_1` = 300, `sum"p"_0"q"_0` = 120, `sum"p"_0"q"_1` = 320, Find P01(L)


Given the following table, find Walsh’s Price Index Number by completing the activity.

Commodity p0 q0 p1 q1 q0q1 `sqrt("q"_0"q"_1)` p0`sqrt("q"_0"q"_1)` p1`sqrt("q"_0"q"_1)`
I 20 9 30 4 36 `square` `square` 180
II 10 5 50 5 `square` 5 50 `square`
III 40 8 10 2 16 `square` 160 `square`
IV 30 4 20 1 `square` 2 `square` 40
Total     390 `square`

Walsh’s price Index Number is

P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`

= `510/square xx 100`

= `square`


In the following table, Laspeyre's and Paasche's Price Index Numbers are equal. Complete the following activity to find x :

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

Solution: P01(L) = P01(P)

`(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = square/(sum "p"_0"q"_1) xx 100`

`(20 + 5x)/square xx 100 = square/14 xx 100`

∴ x = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×