Advertisements
Advertisements
प्रश्न
If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.
उत्तर
Laspeyre’s Price Index Number:
`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`
Paasche’s Price Index Number:
`"P"_01("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
It is given that
P01(L) = 4 × P01(P)
∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100 = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
∴ `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = 4 xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)`
If we denote `(sum "p"_1"q"_0)/(sum "p"_0"q"_0) = "A", (sum "p"_1"q"_1)/(sum "p"_0"q"_1) = "B"`,
then A = 4B
Dorbish-Bowley’s Price Index Number:
`"P"_01("D - B") = ("P"_01("L") + "P"_01("P"))/2`
`"P"_01("D - B") = ((sum "p"_1"q"_0)/(sum "p"_0"q"_0) + (sum "p"_1"q"_1)/(sum "p"_0"q"_1))/2 xx 100`
`= ("A + B")/2 xx 100`
`= (4"B" + "B")/2 xx 100` ....[∵ A = 4B]
`= "5B"/2 xx 100`
= 250 B
∴ P01(D-B) = 250 B ....(i)
Fisher’s Price Index Number:
`"P"_01 ("F") = sqrt((sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx (sum "p"_1"q"_1)/(sum "p"_0"q"_1)) xx 100`
`= sqrt("A" xx "B") xx 100`
`= sqrt("4B" xx "B") xx 100`
`= sqrt("4B"^2) xx 100`
= 2B × 100
∴ P01 (F) = 200 B ...(ii)
Dividing (i) by (ii), we get
`("P"_01 ("D - B"))/("P"_01 ("F")) = (250"B")/(200 "B")`
∴ `("P"_01 ("D - B"))/("P"_01 ("F")) = 5/4`
∴ `"P"_01 ("D - B") = 5/4 xx "P"_01 ("F")`
APPEARS IN
संबंधित प्रश्न
Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.
Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
Choose the correct alternative :
Fisher’s Price Number is given by
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
Fill in the blank :
Paasche’s Price Index Number is given by _______.
State whether the following is True or False :
`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.
`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
Solve the following problem :
Calculate Walsh’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price P0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 3 | x | 2 | 5 |
B | 4 | 6 | 3 | 5 |
Choose the correct alternative:
Fisher’s Price Index Number is
Marshall-Edgeworth's Price Index Number is given by ______
State whether the following statement is True or False:
`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number
State whether the following statement is True or False:
`[sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) + (sumsqrt("q"_0"q"_1))/(sum("p"_0 + "p"_1))] xx 100` is Fisher’s Price Index Number.
Given the following table, find Walsh’s Price Index Number by completing the activity.
Commodity | p0 | q0 | p1 | q1 | q0q1 | `sqrt("q"_0"q"_1)` | p0`sqrt("q"_0"q"_1)` | p1`sqrt("q"_0"q"_1)` |
I | 20 | 9 | 30 | 4 | 36 | `square` | `square` | 180 |
II | 10 | 5 | 50 | 5 | `square` | 5 | 50 | `square` |
III | 40 | 8 | 10 | 2 | 16 | `square` | 160 | `square` |
IV | 30 | 4 | 20 | 1 | `square` | 2 | `square` | 40 |
Total | – | – | – | – | 390 | `square` |
Walsh’s price Index Number is
P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
= `510/square xx 100`
= `square`
State whether the following statement is true or false:
Dorbish-Bowley's Price Index Number is the square root of the product of Laspeyre's and Paasche's Index Numbers.
`sqrt((sump_1q_0)/(sump_0q_0)) xx sqrt((sump_1q_1)/(sump_0q_1)) xx 100`