मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data Commodity Base Year Current Year Price p0 Quantityq0 Pricep1 Quantityq1 A 3 x 2 5 B 4 6 3 5 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 3 x 2 5
B 4 6 3 5
तक्ता
बेरीज

उत्तर

Commodity Base Year Current Year p0q0 p0q1 p1q0 p1q1
p0 q0 p1 q1
A 3 x 2 5 3x 15 2x 10
B 4 6 3 5 24 20 18 15
Total = 24 + 3x = 35 = 18 + 2x  = 25

From the table,

`sump_0q_0` = 3x + 24,

`sump_0q_1` = 35

`sump_1q_0` = 2x + 18,

`sump_1q_1` = 25

Laspeyre’s Price Index Number:

P01(L) = `(sump_1q_0)/(sump_0q_0) xx 100`

= `(2x + 18)/(3x + 24) xx 100`      ...(i)

Paasche’s Price Index Number:

P01(P) = `(sump_1q_1)/(sump_0q_1) xx 100`

= `(25)/(35) xx 100`

= `(5)/(7) xx 100`    ...(ii)

Since P01(L) = P01(P),

`(2x + 18)/(3x + 24) xx 100 = (5)/(7) xx 100`    ...[From (i) and (ii)]

∴ `(2x + 18)/(3x + 24) = (5)/(7)`

∴ 14x + 126 = 15x + 120

∴ 126 – 120 = 15x – 14x

∴ x = 6.

shaalaa.com
Construction of Index Numbers - Weighted Aggregate Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Index Numbers - Miscellaneous Exercise 5 [पृष्ठ ९३]

संबंधित प्रश्‍न

Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.

Commodity Base Year Current Year
Price Quantity Price Quantity
I 10 9 20 8
II 20 5 30 4
III 30 7 50 5
IV 40 8 60 6

Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.


Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.

Commodity Base Year Current year
Price Quantity Price Quantity
A 2 10 2 5
B 2 5 x 2

If Laspeyre's Price Index Number is four times Paasche's Price Index Number, then find the relation between Dorbish-Bowley's and Fisher's Price Index Numbers.


If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.


Choose the correct alternative :

The price Index Number by Weighted Aggregate Method is given by ______.


Laspeyre’s Price Index Number is given by ______.


Fill in the blank :

Paasche’s Price Index Number is given by _______.


Fill in the blank :

Marshall-Edgeworth’s Price Index Number is given by _______.


Walsh’s Price Index Number is given by _______.


State whether the following is True or False :

`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.


`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.


State whether the following is True or False :

`sqrt(("p"_1"q"_0)/(sum"p"_0"q"_0)) xx sqrt((sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100` is Fisher’s Price Index Number.


Solve the following problem :

Calculate Walsh’s Price Index Number for the following data.

Commodity Base year Current year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem :

Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.

Commodity Base Year Current Year
  Price
P0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solve the following problem:

If find x is Walsh’s Price Index Number is 150 for the following data

Commodity Base Year Current Year
  Price
p0
Quantity
q0
Price
p1
Quantity
q1
A 5 3 10 3
B x 4 16 9
C 15 5 23 5
D 10 2 26 8

If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.


Solve the following problem :

Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.


Solve the following problem :

Given that `sum "p"_1"q"_1 = 300, sum "p"_0"q"_1 = 320, sum "p"_0"q"_0` = 120, and Marshall- Edgeworth’s Price Index Number is 120, find `sum"p"_1"q"_0` and Paasche’s Price Index Number.


Choose the correct alternative:

Price Index Number by using Weighted Aggregate Method is given by


Choose the correct alternative:

Fisher’s Price Index Number is


State whether the following statement is True or False:

`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number


Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.

Commodity Base Year Current Year
Price Quantity Price Quantity
A 10 9 50 8
B 20 5 60 4
C 30 7 70 3
D 40 8 80 2

If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).


If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers


If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.


Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :

Commodity Base Year Current Year
Price
p0
Quantity
q0
Price
p1
Quantity
q1
I 8 30 12 25
II 10 42 20 16

Solution:

Commodity Base Year Current Year p1q0 p0q0 p1q1 p0q1
  p0 q0 p1 q1
I 8 30 12 25 360 240 300 200
II 10 42 20 16 840 420 320 160
Total         `bb(sump_1q_0=1200)` `bb(sump_0q_0=660)` `bb(sump_1q_1=620)` `bb(sump_0q_1=360)`

Laspeyre's Price Index Number:

P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`

∴ P01(L) = `square`

Paasche 's Price Index Number:

P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`

∴ P01(P) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×