Advertisements
Advertisements
प्रश्न
Find x in the following table if Laspeyre’s and Paasche’s Price Index Numbers are equal.
Commodity | Base Year | Current year | ||
Price | Quantity | Price | Quantity | |
A | 2 | 10 | 2 | 5 |
B | 2 | 5 | x | 2 |
उत्तर
Commodity | Base Year | Current year | p0q0 | p1q0 | p0q1 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 2 | 10 | 2 | 5 | 20 | 20 | 10 | 10 |
B | 2 | 5 | x | 2 | 10 | 5x | 4 | 2x |
Total | - | - | - | - | 30 | 20+5x | 14 | 10+2x |
From the table,
∑ p0q0 = 30, ∑ p1q0 = 20 + 5x
∑ p0q1 = 14, ∑ p1q1 = 10 + 2x
`"P"_01("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`
∴ `"P"_01("L") = (20 + 5 x)/30 xx 100` ...(i)
`"P"_01("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
∴ `"P"_01("P") = (10 + 2x)/14 xx 100` ....(ii)
Since P01(L) = P01(P),
`(20 + 5x)/30 xx 100 = (10 + 2x)/14 xx 100` ....[From (i) and (ii)]
∴ 14(20 + 5x) = 30(10 + 2x)
∴ 280 + 70x = 300 + 60x
∴ 70x - 60x = 300 - 280
∴ 10x = 20
∴ x = `20/10 = 2`
APPEARS IN
संबंधित प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and MarshallEdgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
L | 4 | 16 | 3 | 19 |
M | 6 | 16 | 8 | 14 |
N | 8 | 28 | 7 | 32 |
If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
Choose the correct alternative :
Walsh’s Price Index Number is given by
State whether the following is True or False :
`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.
State whether the following is True or False :
`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is Dorbish-Bowley’s Price Index Number.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 3 | x | 2 | 5 |
B | 4 | 6 | 3 | 5 |
Solve the following problem :
If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.
Choose the correct alternative:
Fisher’s Price Index Number is
Fisher's Price Index Number is given by ______.
Calculate
a) Laspeyre’s
b) Passche’s
c) Dorbish-Bowley’s Price Index Numbers for following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 10 | 9 | 50 | 8 |
B | 20 | 5 | 60 | 4 |
C | 30 | 7 | 70 | 3 |
D | 40 | 8 | 80 | 2 |
Calculate Marshall-Edgeworth Price Index Number for following.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Given the following table, find Walsh’s Price Index Number by completing the activity.
Commodity | p0 | q0 | p1 | q1 | q0q1 | `sqrt("q"_0"q"_1)` | p0`sqrt("q"_0"q"_1)` | p1`sqrt("q"_0"q"_1)` |
I | 20 | 9 | 30 | 4 | 36 | `square` | `square` | 180 |
II | 10 | 5 | 50 | 5 | `square` | 5 | 50 | `square` |
III | 40 | 8 | 10 | 2 | 16 | `square` | 160 | `square` |
IV | 30 | 4 | 20 | 1 | `square` | 2 | `square` | 40 |
Total | – | – | – | – | 390 | `square` |
Walsh’s price Index Number is
P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
= `510/square xx 100`
= `square`
Calculate Marshall – Edgeworth’s price index number for the following data:
Commodity | Base year | Current year | ||
Price | Quantity | Price | Quantity | |
P | 12 | 20 | 18 | 24 |
Q | 14 | 12 | 21 | 16 |
R | 8 | 10 | 12 | 18 |
S | 16 | 15 | 20 | 25 |