Advertisements
Advertisements
प्रश्न
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
L | 4 | 16 | 3 | 19 |
M | 6 | 16 | 8 | 14 |
N | 8 | 28 | 7 | 32 |
उत्तर
Commodity | Base Year | Current Year | q0q1 | `sqrt("q"_0"q"_1)` | `"p"_0 sqrt("q"_0"q"_1)` | `"p"_1 sqrt("q"_0"q"_1)` | ||
p0 | q0 | p1 | q1 | |||||
L | 4 | 16 | 3 | 19 | 304 | 17.44 | 69.76 | 52.32 |
M | 6 | 16 | 8 | 14 | 224 | 14.97 | 89.82 | 119.76 |
N | 8 | 28 | 7 | 32 | 896 | 29.93 | 239.44 | 209.51 |
Total | - | - | - | - | - | 399.02 | 381.59 |
From the table,
`sum "p"_0 sqrt("q"_0"q"_1) = 399.02, sum "p"_1 sqrt("q"_0"q"_1) = 381.59`
Walsh’s Price Index Number:
`"P"_01 ("W") = (sum "p"_1 sqrt("q"_0"q"_1))/(sum "p"_0 sqrt ("q"_0"q"_1)) xx 100`
`= 381.59/399.02 xx 100`
= 95.63
APPEARS IN
संबंधित प्रश्न
If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
Given that ∑ p0q0 = 220, ∑ p0q1 = 380, ∑ p1q1 = 350 and MarshallEdgeworth’s Price Index Number is 150, find Laspeyre’s Price Index Number.
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Choose the correct alternative :
Fisher’s Price Number is given by
Laspeyre’s Price Index Number is given by _______.
State whether the following is True or False :
`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.
Solve the following problem :
Calculate Dorbish-Bowley’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 11 | 28 |
II | 9 | 25 | 12 | 22 |
III | 10 | 15 | 13 | 11 |
Solve the following problem :
Calculate Walsh’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solve the following problem :
Find x if Paasche’s Price Index Number is 140 for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 20 | 8 | 40 | 7 |
B | 50 | 10 | 60 | 10 |
C | 40 | 15 | 60 | x |
D | 12 | 15 | 15 | 15 |
Solve the following problem :
Given that Laspeyre’s and Paasche’s Price Index Numbers are 25 and 16 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Number.
Solve the following problem :
If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.
Choose the correct alternative:
Fisher’s Price Index Number is
State whether the following statement is True or False:
`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number
Calculate Marshall-Edgeworth Price Index Number for following.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
Given the following table, find Walsh’s Price Index Number by completing the activity.
Commodity | p0 | q0 | p1 | q1 | q0q1 | `sqrt("q"_0"q"_1)` | p0`sqrt("q"_0"q"_1)` | p1`sqrt("q"_0"q"_1)` |
I | 20 | 9 | 30 | 4 | 36 | `square` | `square` | 180 |
II | 10 | 5 | 50 | 5 | `square` | 5 | 50 | `square` |
III | 40 | 8 | 10 | 2 | 16 | `square` | 160 | `square` |
IV | 30 | 4 | 20 | 1 | `square` | 2 | `square` | 40 |
Total | – | – | – | – | 390 | `square` |
Walsh’s price Index Number is
P01(W) = `square/(sum"p"_0sqrt("q"_0"q"_1)) xx 100`
= `510/square xx 100`
= `square`
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
Laspeyre’s Price Index Number uses current year’s quantities as weights.
If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.