Advertisements
Advertisements
प्रश्न
Calculate Marshall-Edgeworth Price Index Number for following.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 8 | 20 | 11 | 15 |
B | 7 | 10 | 12 | 10 |
C | 3 | 30 | 5 | 25 |
D | 2 | 50 | 4 | 35 |
उत्तर
Construct the following table:
Commodity | Base Year | Current Year | p0q0 | p1q0 | p0q1 | p1q0 | ||
p0 | q0 | p1 | q0 | |||||
A | 8 | 20 | 11 | 5 | 160 | 220 | 40 | 55 |
B | 7 | 10 | 12 | 10 | 70 | 120 | 70 | 120 |
C | 3 | 30 | 5 | 20 | 90 | 150 | 60 | 100 |
D | 2 | 50 | 4 | 15 | 100 | 200 | 30 | 60 |
Total | – | – | – | – | 420 | 690 | 200 | 335 |
From the table, `sum"p"_0"q"_0` = 420, `sum"p"_1"q"_0` = 690, `sum"p"_0"q"_1` = 200, `sum"p"_1"q"_1` = 335
Marshall-Edgeworth’s Price Index Number:
P01(M-E) = `(sum"p"_1"q"_0 + sum"p"_1"q"_1)/(sum"p"_0"q"_0 + sum"p"_0"q"_1)`
= `(690 + 335)/(420 + 200) xx 100`
= `1025/6200 xx 100`
= 165.32
APPEARS IN
संबंधित प्रश्न
If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
Choose the correct alternative :
The price Index Number by Weighted Aggregate Method is given by ______.
Paasche’s Price Index Number is given by ______
Choose the correct alternative :
Fisher’s Price Number is given by
Fill in the blank :
Paasche’s Price Index Number is given by _______.
Fill in the blank :
Marshall-Edgeworth’s Price Index Number is given by _______.
Walsh’s Price Index Number is given by _______.
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
Solve the following problem :
Calculate Dorbish-Bowley’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 11 | 28 |
II | 9 | 25 | 12 | 22 |
III | 10 | 15 | 13 | 11 |
Solve the following problem :
Calculate Marshall-Edgeworth’s Price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
X | 12 | 35 | 15 | 25 |
Y | 29 | 50 | 30 | 70 |
If Laspeyre’s and Dorbish’s Price Index Numbers are 150.2 and 152.8 respectively, find Paasche’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Marshall-Edgeworth's Price Index Number is given by ______
If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
`sqrt((sump_1q_0)/(sump_0q_0)) xx sqrt((sump_1q_1)/(sump_0q_1)) xx 100`
Laspeyre’s Price Index Number uses current year’s quantities as weights.
Calculate Marshall – Edgeworth’s price index number for the following data:
Commodity | Base year | Current year | ||
Price | Quantity | Price | Quantity | |
P | 12 | 20 | 18 | 24 |
Q | 14 | 12 | 21 | 16 |
R | 8 | 10 | 12 | 18 |
S | 16 | 15 | 20 | 25 |
If ∑ p0q0 = 120, ∑ p0q1 = 160, ∑ p1q1 = 140, ∑ p1qo = 200, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.