Advertisements
Advertisements
प्रश्न
Paasche’s Price Index Number is given by ______
पर्याय
`(sum"p"_0"q"_0)/(sum"p"_1"q"_0) xx 100`
`(sum"p"_0"q"_1)/(sum"p"_1"q"_1) xx 100`
`(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`
`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`
उत्तर
Paasche’s Price Index Number is given by`bbunderline((sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100)`.
APPEARS IN
संबंधित प्रश्न
Calculate Walsh’s Price Index Number.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
L | 4 | 16 | 3 | 19 |
M | 6 | 16 | 8 | 14 |
N | 8 | 28 | 7 | 32 |
Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.
Dorbish-Bowley’s Price Index Number is given by ______.
Choose the correct alternative :
Fisher’s Price Number is given by
Laspeyre’s Price Index Number is given by _______.
State whether the following is True or False :
`sum("p"_1"q"_1)/("p"_0"q"_1)` is Laspeyre’s Price Index Number.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
`(sum"p"_0("q"_0 + "q"_1))/(sum"p"_1("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth’s Price Index Number.
Solve the following problem :
Calculate Laspeyre’s and Paasche’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
price p1 |
Quantity q1 |
|
A | 20 | 18 | 30 | 15 |
B | 25 | 8 | 28 | 5 |
C | 32 | 5 | 40 | 7 |
D | 12 | 10 | 18 | 10 |
Solve the following problem :
Calculate Walsh’s Price Index Number for the following data.
Commodity | Base year | Current year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Find x if Laspeyre’s Price Index Number is same as Paasche’s Price Index Number for the following data
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 3 | x | 2 | 5 |
B | 4 | 6 | 3 | 5 |
Solve the following problem :
If `sum"p_"0"q"_0 = 120, sum "p"_0"q"_1 = 160, sum "p"_1"q"_1 = 140, and sum "p"_1"q"+0` = 200, find Laspeyre’s, Paasche’s Dorbish-Bowley’s and Marshall Edgeworth’s Price Index Number.
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Marshall-Edgeworth's Price Index Number is given by ______
State whether the following statement is True or False:
`(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100` is Paasche’s Price Index Number
Calculate Walsh’s price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 40 | 3 |
II | 20 | 2 | 25 | 8 |
III | 30 | 3 | 50 | 27 |
IV | 60 | 9 | 90 | 36 |
If Laspeyre’s and Paasche’s Price Index Numbers are 50 and 72 respectively, find Dorbish-Bowley’s and Fisher’s Price Index Numbers
Find the missing price if Laspeyre’s and Paasche’s Price Index Numbers are equal for following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 1 | 10 | 2 | 5 |
B | 1 | 5 | – | 12 |
If `sum"p"_0"q"_0` = 150, `sum"p"_0"q"_1` = 250, `sum"p"_1"q"_1` = 375 and P01(L) = 140. Find P01(M-E)
Complete the following activity to calculate, Laspeyre's and Paasche's Price Index Number for the following data :
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
I | 8 | 30 | 12 | 25 |
II | 10 | 42 | 20 | 16 |
Solution:
Commodity | Base Year | Current Year | p1q0 | p0q0 | p1q1 | p0q1 | ||
p0 | q0 | p1 | q1 | |||||
I | 8 | 30 | 12 | 25 | 360 | 240 | 300 | 200 |
II | 10 | 42 | 20 | 16 | 840 | 420 | 320 | 160 |
Total | `bb(sump_1q_0=1200)` | `bb(sump_0q_0=660)` | `bb(sump_1q_1=620)` | `bb(sump_0q_1=360)` |
Laspeyre's Price Index Number:
P01(L) = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100 = square/660xx100`
∴ P01(L) = `square`
Paasche 's Price Index Number:
P01(P) = `(sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100=(620)/(square) xx 100`
∴ P01(P) = `square`