Advertisements
Advertisements
प्रश्न
Calculate Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall - Edgeworth’s Price index numbers.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 9 | 20 | 8 |
II | 20 | 5 | 30 | 4 |
III | 30 | 7 | 50 | 5 |
IV | 40 | 8 | 60 | 6 |
उत्तर
Commodity | Base Year | Current Year | p0q0 | p1q0 | p0q1 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
I | 10 | 9 | 20 | 8 | 90 | 180 | 80 | 160 |
II | 20 | 5 | 30 | 4 | 100 | 150 | 80 | 120 |
III | 30 | 7 | 50 | 5 | 210 | 350 | 150 | 250 |
IV | 40 | 8 | 60 | 6 | 320 | 480 | 240 | 360 |
Total | - | - | - | - | 720 | 1160 | 550 | 890 |
From the table,
`sum "p"_0"q"_0 = 720, sum "p"_1"q"_0 = 1160`
`sum "p"_0"q"_1 = 550, sum "p"_1"q"_1 = 890`
(i) Laspeyre’s Price Index Number:
`"P"_01 ("L") = (sum "p"_1"q"_0)/(sum "p"_0"q"_0) xx 100`
`= 1160/720 xx 100`
= 161.11
(ii) Paasche’s Price Index Number:
`"P"_01 ("P") = (sum "p"_1"q"_1)/(sum "p"_0"q"_1) xx 100`
`= 890/550 xx 100`
= 161.82
(iii) Dorbish-Bowley’s Price Index Number:
`"P"_01 ("D - B") = ("P"_01 ("L") + "P"_01 ("P"))/2`
`= (161.11 + 161.82)/2`
= 161.46
(iv) Marshall-Edgeworth’s Price Index Number:
`"P"_01 ("M- E") = (sum "p"_1"q"_0 + sum "p"_1"q"_1)/(sum "p"_0"q"_0 + sum "p"_0"q"_1) xx 100`
`= (1160 + 890)/(720 + 550) xx 100`
= 161.42
APPEARS IN
संबंधित प्रश्न
If ∑ p0q0 = 140, ∑ p0q1 = 200, ∑ p1q0 = 350, ∑ p1q1 = 460, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s and Marshall-Edgeworth’s Price Index Numbers.
Given that Laspeyre’s and Dorbish-Bowley’s Price Index Numbers are 160.32 and 164.18 respectively, find Paasche’s Price Index Number.
If Dorbish-Bowley's and Fisher's Price Index Numbers are 5 and 4, respectively, then find Laspeyre's and Paasche's Price Index Numbers.
Choose the correct alternative :
Fisher’s Price Number is given by
Choose the correct alternative :
Marshall-Edgeworth’s Price Index Number is given by
Laspeyre’s Price Index Number is given by _______.
State whether the following is True or False :
`(1)/(2)[sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0)) + sqrt("p"_1"q"_1)/(sqrt("p"_0"q"_1))] xx 100` is Fisher’s Price Index Number.
`(sum"p"_0sqrt("q"_0"q"_1))/(sum"p"_1sqrt("q"_0"q"_1)) xx 100` is Walsh’s Price Index Number.
Solve the following problem :
Find x if Paasche’s Price Index Number is 140 for the following data.
Commodity | Base Year | Current Year | ||
Price p0 |
Quantity q0 |
Price p1 |
Quantity q1 |
|
A | 20 | 8 | 40 | 7 |
B | 50 | 10 | 60 | 10 |
C | 40 | 15 | 60 | x |
D | 12 | 15 | 15 | 15 |
Solve the following problem :
Given that `sum "p"_0"q"_0 = 130, sum "p"_1"q"_1 = 140, sum "p"_0"q"_1 = 160, and sum "p"_1"q"_0 = 200`, find Laspeyre’s, Paasche’s, Dorbish-Bowley’s, and Marshall-Edgeworth’s Price Index Numbers.
Choose the correct alternative:
Price Index Number by using Weighted Aggregate Method is given by
Choose the correct alternative:
The formula P01 = `(sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100` is for
State whether the following statement is True or False:
`(sum"p"_0sqrt("q"_0 + "q"_1))/(sum"p"_1sqrt("q"_0 + "q"_1)) xx 100` is Marshall-Edgeworth Price Index Number
Calculate Walsh’s price Index Number for the following data.
Commodity | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
I | 10 | 12 | 40 | 3 |
II | 20 | 2 | 25 | 8 |
III | 30 | 3 | 50 | 27 |
IV | 60 | 9 | 90 | 36 |
If P01(L) = 40 and P01(P) = 90, find P01(D-B) and P01(F).
If P01 (L) = 121, P01 (P) = 100, then P01 (F) = ______.
Laspeyre’s Price Index Number uses current year’s quantities as weights.